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MATLAB-BASED ALGORITHM TO SOLVING AN OPTIMAL
STABILIZATION PROBLEM FOR THE DESCRIPTOR SYSTEMS

Velieva N.I., Agamalieva L.F.

Abstract In the work solution of the optimal stabilization problem, when movement of the
object is described by the descriptor system is considered using MATLAB package procedures.
A numerical algorithm is developed for the solution of this problem. The obtained results are
illustrated on the example.
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1 Introduction

We propose a general, numerically reliable computational approach to solve the optimal
stabilization problem for the descriptor systems. This study is stimulated by strong
relations of these problems to some technical and practical systems, as well as mobile
manipulators, electrical networks and etc. [13,14]. Considering the recent achievements
of the computational techniques it becomes important development of the new methods
which allow one to cover larger classes of the practical problems, raise the accuracy
and reduce the computational costs [16]. On the base of Levine-Athans [1] algorithm
is shown that the proposed algorithm requires solution of two generalized algebraic
Lyapunov equation [2], which is solved by signium function and orthogonal projections
methods. Initial value is chosen from the asymptotical stability condition of the closed-
loop system [10].

Note that the similar problem for the non-descriptor systems has been considered
by various authors. In [1] the solution of such problems are reduced to the solution
of three non-linear equations. In [3-5] the methods of convex analysis are applied to
construct the solution of the problem. In the works [6,11] the fine function method is
used.

But a wide class of practical problems is described by the so called descriptor
systems when the determinant of the coefficient matrix is equal to zero. The paper
deals with this case.

2 Problem formulation

Let the movement of the object be described by the system of linear differential equa-
tions with constant coefficients

E
.
x(t) = Fx(t) + Gu(t); E x(0) = X0, (1)
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y = Cx (t) .

It needs to minimizes the functional

J =

∫ ∞
0

(x′Qx + u′Ru)dt (2)

by the regulator low
u (t) = Ky (t) (3)

under the condition that close-loop system (1),(3) was asymptotically stable.
Here x ∈ Rn-is a phase vector of the object coordinates, u ∈ Rm- control vector,
y ∈ Rz- observable vector, E−(n×n), F−(n×n), G−(n×m), C−(z×n), Q−(n×n) =
Q′ ≥ 0, R− (m×m) = R′ > 0 are given constant matrices. Suppose that the matrix
E is singular, i.e. rankE = r < n. In this case (1) is call a descriptor system.

Considering (3) in (1) we obtain the problem

E
.
x(t) = (F + GKC)x(t); E x(0) = X0. (4)

To find the optimal K this system must be strongly stable.
Definition. System (4) is called strongly stabilizable if

rank(sE − F −GKC) = n

for any complex s with non-negative real part [10].
First suppose that det(E) 6= 0. It is known [9] that in this case the solution of the

regularized problem is close enough to the solution of the considered non-regularized
problem. Then solution of the system (1) may be written in the following form

.
x(t) = F̄ x(t) + Ḡu(t) , x(0) = E−1X0, (5)

where
F̄ = E−1F ; Ḡ = E−1G. (6)

According to [1, 7] solution of the problem (5), (2), (3) is reduced to the solution of
the equation with respect to S and U correspondingly

(F̄ + ḠK̄C)′S + S(F̄ + ḠK̄C) + Q + C ′K̄ ′RK̄C = 0, (7)

(F̄ + ḠK̄C)U + U(F̄ + ḠK̄C)′ + X0 = 0, (8)

K̄ = −R−1Ḡ′SUC ′(CUC ′)−1. (9)

Considering (6) after some technical transformations the system (7)-(9) may be written
in the form

(F + GKC)′PE + E ′P (F + GKC) + Q + C ′K ′RKC = 0, (10)

(F + GKC)UE ′ + EU(F + GKC)′ + EX0E
′ = 0, (11)

K = −R−1G′PEUC ′(CUC ′)−1, (12)
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where
P = E ′−1 S E−1. (13)

As is known there exist calculation algorithms for the solution of the problem
(5),(11) that require to solve two algebraic Lyapunov equations in each step. Now
we try to generalize this result for the system (10)-(12). In step 2 of algorithm 1 below
we do this using the corresponding MATLAB procedures. In this case the generalized
Lyapunov equation must be solved in each step. In defer from (7)-(9) in (10)-(12) we
have E instead of E−1. This fact may make easy the calculation procedure. Thus the
following algorithm may be offered for the solution of the equations (10)-(12).

Algorithm 1
1. Choose initial approach Ki such that eigenvalues of the matrix (E − F − GKiC)
were negative.
2. Solve the generalized algebraic Lyapunov equations (10)-(11).
3. Calculate

Ki+1 = −R−1G′PiEUiC
′(CUiC

′)−1;

4. Check up the condition ‖Ki+1 −Ki‖ ≤ ε. If it is satisfied then the process is over.
Otherwise taking Ki = Ki+1 go to step 2.

Note that the convergence of this algorithms is studied in [10].
Now let’s formulate discrete linear quadratic problem similarly to continuous case.
Let the object’s motion be described by the stationary system of finite – difference

equations
Ex(i + 1) = Ψx (i) + Γu (i) , i = 1, 2, ..., Ex(0) = X0 (14)

y (i) = Cx (i) ,

where Ψ = eF4, Γ = (eF4 − E)F−1G, 4 is a discretization interval.
It needs to minimized the functional

J =
∞∑
i=0

(x′ (i)Qx (i) + u′ (i)Ru (i)) , (15)

by the regulator low
u(i) = Fy(i) = FCx(i), (16)

under the condition that close-loop system (14)-(16) was asymptotically stable. E ill
a conditioned matrix

It is supposed that det(E) 6= 0. Then solution of the system (14) may be written
in the following form

x(i + 1) = E−1Ψx (i) + E−1Γu (i) , i = 1, 2, ..., x(0) = E−1X0. (17)

Solution on the problem (17),(15),(16) is reduced to the solution of the equations
[8,9]

L =
(
Ψ̄ + Γ̄FC

)′
L
(
Ψ̄ + Γ̄FC

)
+ Q + C ′FRFC, (18)
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U =
(
Ψ̄ + Γ̄FC

)
U
(
Ψ̄ + Γ̄FC

)′
+ X0 , (19)

F = −
(
R + Γ̄′LΓ̄

)−1
Γ̄′LΨ̄UC ′ (CUC ′)

−1
, (20)

where
Ψ̄ = E−1Ψ ; Γ̄ = E−1Γ. (21)

If consider the definition (21) then the system (18)-(20) one can write in the form

E ′PE = (Ψ + ΓFC)
′
P (Ψ + ΓFC) + Q + C ′FRFC, (22)

EUE ′ = (Ψ + ΓFC)U (Ψ + ΓFC)
′
+ X0 , (23)

F = − (R + Γ′PΓ)
−1

Γ′PΨUC ′ (CUC ′)
−1

, (24)

where
P = E ′−1LE ′.

Similarly to continuous case in defer from (17)-(19) we have E instead of E−1in (22)-
(24).
This fact may make easy the calculation procedure. Thus one may offer the following
algorithm for the solution of the equations (22)-(24).
Algorithm 2.
1. Chose initial approach Fi such that the eigenvalues of the matrix (E− (Ψ + ΓFiC))
was inside of the unit circle;
2. Solve the following generalized discrete algebraic Lyapynov equation

E ′PiE = (Ψ + ΓFiC)
′
Pi (Ψ + ΓFiC) + Q + C ′FiRFiC,

EUiE
′ = (Ψ + ΓFiC)Ui (Ψ + ΓFiC)

′
+ EXiE;

3. Calculate Fi+1

Fi+1 = − (R + Γ′PiΓ)
−1

Γ′PiΨUiC
′ (CUiC

′)
−1

;

4. Check up the condition ‖Fi+1 − Fi‖ ≤ ε . If it is satisfied then the process is over.
Otherwise taking Fi = Fi+1 go to step 2.
For illustrating the offered algorithm, we consider the following examples from [1].
Example. [1] Values of the matrices in (1),(2), E,F,G,C, Q, R are as follows

E =

[
1 0
0 a

]
; G =

[
0
1

]
; C =

[
0 1

]
;

Q =

[
1 0
0 0

]
; R = 1 ; F =

[
0 1
−1 0

]
.

The calculations are carried out for different values of a. The solution K of the
problem (7)-(9) obtained by the method given in [1] we define by Kath and the corre-
sponding coefficient of the optimal regulator by Gath. The same results obtained by
solving the equations (10)-(12) using the above mentioned algorithm we denote by Kd

and Gd.



84 Velieva N.I., Agamalieva L.F.

Table 1: The order of approximation of the gradient for the different values of a.
a Kath Kd Gath Gd

1 -0.8165 -0.8165 0.000543e−15 0.000543e−15

10−6 -7.071e−4 -7.07106e−4 1.995e−7 1.24e−8

10−7 -2.2361e−4 -2.2361e−4 2.3772e−5 2.6233e−8

10−8 -7.07107e−5 -7.07106e−5 2.5408e−5 4.2534e−7

10−9 -2.2361e−5 -2.2361e−5 1.6221e−5 7.3852e−10

10−10 -7.07108e−6 -7.0725e−6 9.3583e−4 2.1024e−7

In table below the order of approximation of the gradient for the different values of
a.

Comparing the corresponding values of Gath and Gd for the different values of a we
see that Gd is less that Gath on few orders. This fact demonstrates the efficiency of the
proposed algorithm.
Note. Using the recent development of the high accuracy calculation techniques (as
well as Symbolic calculation methods) [12] the proposed algorithms may be modified
and give high accuracy results.

3 Conclusion

The paper is devoted to the development the algorithms to the solution of the opti-
mal stabilization problems for the descriptor systems. The results of the numerical
experiments for the test examples are given.
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