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OF 3D INVERSE PROBLEM OF MAGNETOMETRY
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Abstract Recovery of magnetic target parameters from magnetic sensor measurements has
attracted wide interests and found many practical applications. However, difficulties present
in identifying the magnetization due to the complications of magnetization distributions over
investigated object, errors and noises of measurement data, degrade the accuracy and quality
of the restored parameters. In this paper we consider a modern model for the mentioned
problem (magnetic inversion based on both total magnetic intensity data and full tensor
gradient magnetic data) and some method of its solving. This method involves taking into
account the round-off errors, accumulation of which could significantly influences the restored
solution in the case of using model with full tensor gradient magnetic data. Tikhonov reg-
ularization has been applied in solving the inversion problem with the modified generalized
discrepancy principle (that include information about accumulated round-off errors) for the
choosing regularization parameter.
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1 Introduction

Recovery of magnetization parameters from magnetic sensor measurements has at-
tracted wide interests and found many practical applications. The inverse problem
under investigation is to discover the magnetization of some object with magnetic field
measurements made outside the ship.

One of the practical interests to the inverse problem is to recover the magnetization
parameters of some object with a minimum number of sensor measurements [1, 2, 3, 4].
The magnetization of some object can be separated into two types of components. The
first type is the induced magnetization, which is generated by the object immersing
in the earth magnetic field. The induced magnetization can be predicted with nu-
merical computation. The second type is the permanent magnetization. Its strength
and direction depend on the magnetic history of mechanical and thermal constraints,
magnetostriction, e.t.c. Because we have no a priori knowledge to this magnetic his-
tory, the conventional approach is to use magnetic sensor measurements to determine
it with an assumption of uniform magnetization. In this paper we consider the inverse
problem of restoring total magnetization. However, difficulties present in identifying
the total magnetization due to the complications of magnetization distributions over
the investigated object, errors and noises of measurement data, degrade the accuracy
and quality of the parameter identification.
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At this article we consider both traditional magnetic data model (based on total
magnetic intensity) and modern magnetic data model (based on full tensor gradient
magnetic data). The modern model has been considered in detail at work [5] (the
following statements based on the information from this work). Using this model for
solving real world practical applications became possible with the development of a high
temperature superconducting quantum interference device operating in liquid nitrogen,
based on which a novel rotating magnetic gradiometer system has been designed. This
system allows to measure components of the gradient tensor. Gradient measurements
are relatively insensitive to orientation because gradients arise largely from anomalous
sources, and the background geomagnetic gradient is low. This contrasts with the
field vector, which is dominated by the background field from Earth’s core. Gradient
measurements also provide valuable additional information, compared to conventional
total-field measurements, when the field is undersampled. Many discussions are given
on the on the advantages of magnetic gradient tensor surveys as compared to the
conventional total magnetic intensity surveys.

But for numerical investigation the fact that geomagnetic gradient is low leads to the
situation when round-off errors could significantly influence the result of calculations [6].
So, we try to apply the method [7] which is able to solve this problem via generalization
of the “generalized discrepancy principle” [8, 9] for choosing regularization parameter
in Tikhonov regularization procedure.

2 3D model of the full tensor magnetic gradient data

The equation describing magnetic field Bfield dipole of dipole sources m is defined as

Bfield dipole =
µ0

4π

(
3(m · r)r

r5
− m
r3

)
,

where m = mxi + myj + mzk , r = (x − xs)i + (y − ys)j + (z − zs)k ,
r =

√
(x− xs)2 + (y − ys)2 + (z − zs)2 is a distance between point (xs, ys, zs), which

corresponds to allocation of the triaxial sensor that measures magnetic field Bfield dipole,
and point (x, y, z) of dipole source m , µ0 is a permeability in vacuum.

Transforming Bfield dipole into following form

Bfield dipole = Bx dipolei +By dipolej +Bz dipolek =
µ0

4π

((
3(m · r)(x− xs)

r5
− mx

r3

)
i+

+

(
3(m · r)(y − ys)

r5
− my

r3

)
j +

(
3(m · r)(z − zs)

r5
− mz

r3

)
k

)

and redefining the variables as i = x, y, z and p = (px, py, pz) = (xs, ys, zs), we have
following representation for components of vector Bfield dipole:

Bi dipole =
µ0

4π

(
3(m · r)(i− pi)

r5
− mi

r3

)
.
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Taking derivative of Bi dipole with respect to spatial variable i = x, y, z and j =
x, y, z 6= i, we have the diagonal elements and non-diagonal elements of tensor matrix
Btensor:

Bii =
µ0

4π

(
6mi(i− pi)

r5
+

3(m · r)

r5
− 15(m · r)(i− pi)(i− pi)

r7

)
,

Bij =
µ0

4π

(
3mi(j − pj)

r5
+

3mj(i− pi)
r5

− 15(m · r)(i− pi)(j − pj)
r7

)
.

Note, that we define full tensor magnetic gradient Btensor, which unlike to magnetic
induction Bfield dipole (that has only 3 components) has 9 components and can be
written in the following matrix form:

Btensor = [Bij] =


∂Bx

∂x

∂Bx

∂y

∂Bx

∂z
∂By

∂x

∂By

∂y

∂By

∂z
∂Bz

∂x

∂Bz

∂y

∂Bz

∂z

 =

Bxx Bxy Bxz

Byx Byy Byz

Bzx Bzy Bzz

 ,

where
∂Bx

∂y
=
∂By

∂x
,
∂Bx

∂z
=
∂Bz

∂x
,
∂By

∂z
=
∂Bz

∂y
and

∂Bx

∂x
+
∂By

∂y
+
∂Bz

∂z
= 0. So, actually,

we have only 5 different components of the tensor matrix.
Thus, for the whole object, for volume V of which we want to restore the magnetic

moment density M (M = Mxi + Myj + Mzk), we have the following 3D Fredholm
integral equations of the 1st kind:

Bfield dipole =
µ0

4π

∫∫∫
V

(
3(M · r)r

r5
− M

r3

)
dv,

Bii =
µ0

4π

∫∫∫
V

(
6mi(i− pi)

r5
+

3(M · r)

r5
− 15(M · r)(i− pi)(i− pi)

r7

)
dv,

Bij =
µ0

4π

∫∫∫
V

(
3mi(j − pj)

r5
+

3mj(i− pi)
r5

− 15(M · r)(i− pi)(j − pj)
r7

)
dv,

which can be rewritten as the following system of two 3D Fredholm integral equations
of the 1st kind:

Bfield dipole(xs, ys, zs) =
µ0

4π

∫∫∫
V

K1(x− xs, y − ys, z − zs)M (x, y, z)dv,

B tensor dipole(xs, ys, zs) =
µ0

4π

∫∫∫
V

K2(x− xs, y − ys, z − zs)M (x, y, z)dv,

(1)

where Bfield dipole = [Bx By Bz]
T and B tensor dipole = [Bxx Bxy Bxz Byz Bzz]

T . Kernels
K1 and K2 of these integral equations can be written as

K1(x−xs, y−ys, z−zs) =
1

r5

 3(x− xs)2 − r2 3(x− xs)(y − ys) 3(x− xs)(z − zs)
3(y − ys)(x− xs) 3(y − ys)2 − r2 3(y − ys)(z − zs)
3(z − zs)(x− xs) 3(z − zs)(y − ys) 3(z − zs)2 − r2
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and

K2(x− xs, y − ys, z − zs) =
3

r7
×

×


(x− xs)[3r2 − 5(x− xs)2] (y − ys)[r2 − 5(x− xs)2] (z − zs)[r2 − 5(x− xs)2]
(y − ys)[r2 − 5(x− xs)2] (x− xs)[r2 − 5(y − ys)2] −5(x− xs)(y − ys)(z − zs)
(z − zs)[r2 − 5(x− xs)2] −5(x− xs)(y − ys)(z − zs) (x− xs)[r2 − 5(z − zs)2]
−5(x− xs)(y − ys)(z − zs) (z − zs)[r2 − 5(y − ys)2] (y − ys)[r2 − 5(z − zs)2]

(x− xs)[r2 − 5(z − zs)2] (y − ys)[r2 − 5(z − zs)2] (z − zs)[3r2 − 5(z − zs)2]

 .

If we take into account that V ⊂ P = {(x, y, z) : Lx 6 x 6 Rx, Ly 6 y 6 Ry, Lz 6
z 6 Rz} and the system of sensor planes is restricted by rectangular parallelepiped
Q = {(xs, ys, zs) ≡ (s, t, r) : Ls 6 s 6 Rs, Lt 6 t 6 Rt, Lr 6 r 6 Rr}, we can rewrite
the system (1) in the following operator form

AM =
µ0

4π

Rx∫
Lx

Ry∫
Ly

Rz∫
Lz

K(s, t, r, x, y, z)M (x, y, z)dxdydz = B(s, t, r), (2)

where B(s, t, r) and M (x, y, z) are vector–functions:
B = [Bx By Bz Bxx Bxy Bxz Byz Bzz]

T and M = [Mx My Mz]
T , kernelK(s, t, r, x, y, z)

is a matrix-function: K = [K1 K2]
T (K = [K1]

T in the case of total magnetic intensity
model without using full tensor magnetic gradient data).

Then we will be assume that M ∈ W 2
2 (P ), B ∈ L2(Q), and operator A with kernel

K is continuous and unique. Norms of the right-hand side of equation (2) and the solu-
tion are introduces as follows: ‖B‖L2 =

=
√
‖Bx‖2L2

+ ‖By‖2L2
+ ‖Bz‖2L2

+ ‖Bxx‖2L2
+ ‖Bxy‖2L2

+ ‖Bxz‖2L2
+ ‖Byz‖2L2

+ ‖Bzz‖2L2
,

‖M ‖W 2
2

=
√
‖Mx‖2W 2

2
+ ‖My‖2W 2

2
+ ‖Mz‖2W 2

2
. Suppose that instead of accurately known

B̄ and A their approximate values B δ and Ah are known, such that ‖B δ − B̄‖L2 6 δ,
‖A−Ah‖W 2

2→L2
6 h. So, the inverse problem is ill-posed and it is necessary to build

a regularizing algorithm for its solving. We use the algorithm based on minimization
of the Tikhonov functional [9]

Fα[M ] = ‖AhM −B δ‖2L2
+ α‖M ‖2W 2

2
. (3)

For any α > 0 an unique extremal of the Tikhonov functional M α
η , η = {δ, h}, which

implements minimum of Fα[M ], exists. To select the regularization parameter the
generalized discrepancy principle can be used [8, 9]. When we choose the parameter
α = α(η) accordingly to the generalized discrepancy principle

ρ(α) = ‖AhM α
η −B δ‖2L2

−
(
δ + h‖M α

η‖W 2
2

)2
= 0 (4)

M α
η tends to exact solution as η → 0 in W 2

2 . The minimal element of the Tikhonov
functional for fixed α > 0 can be found by the application of the conjugate gradient
method.
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3 Structure of the algorithm

For numerical minimization of functional (3) we used algorithms which were described
in details at works [10, 11], including some recommendations of its effective paral-
lelization. Thereby, in this section we describe some new approach that has not been
mentioned at [10, 11], but was introduced only at [6].

After discretization an approximate solution M , which realizes the minimum of
functional (3), can be found as a solution of the system

(AThAh + αRTR)M = AThBδ, (5)

where R — finite-difference approximation of the operator R: ‖M ‖W 2
2

= ‖RM ‖L2 ,
dimensions of matrix A: (NA ×N), matrix R: (NR ×N), vector M : (N × 1).

For numerical solving of system (5) we use the conjugate gradient method in the
form that was proposed at [7].

Let M (s) — minimizing sequence, p(s), q(s) — auxiliary vectors, p(0) = 0, M (1) —
any arbitrary point. Then formulae of the conjugate gradient method for searching of
solution M (N) of system (5) can be rewritten as follow:

r(s) =

{
ATh
(
AhM

(s) −Bδ

)
+ αRT

(
RM (s)

)
, if s = 1,

r(s−1) − q(s−1)/
(
p(s−1), q(s−1)

)
, if s > 2,

p(s) = p(s−1) +
r(s)(

r(s), r(s)
) ,

q(s) = ATh
(
Ah p

(s)
)

+ αRT
(
Rp(s)

)
,

M (s+1) = M (s) − p(s)(
p(s), q(s)

) .
Now, we have to remind that the conjugate gradient method can theoretically be

viewed as a direct method, because it produce the exact solution after finite number of
iterations (in the absence of round-off errors), which is no larger than size N of matrix
(AThAh + αRTR) of system (5). However, the conjugate gradient method is unstable
with respect to even small perturbation, and exact solution is never obtained. Different
situations are probable. The first one is when pretty soon we come to a neighborhood of
the minimum, but because of round-off errors discrepancy r(s) is not reduced further,
subsequent iterations are made with no sense. So it is very important to develop
a criterion for earlier termination of the iterative process. The second one is that
due to the round-off errors most directions are not in practice conjugate, and iterative
process may stop far enough away from the exact minimum. Fortunatelly, the conjugate
gradient method can be used as an iterative method as it provides monotonically
improving approximations to the exact solution, which may reach the required tolerance
after a relatively small (compared to the problem size) number of iterations. The
method that is able to help us to take into account the round-off errors is called as
«unreliability of discrepancy criterion» and was proposed by Kalitkin and Kuzmina
at [7].
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Let us consider the component-wise calculation of the residual on the sst iteration:

r(s)n =

NA∑
k=1

Akn
(
AM (s)

)
k

+ α

NR∑
k=1

Rkn

(
RM (s)

)
k
−
(
ATBδ

)
n
. (6)

In the calculations of right-side (6) of this equation the round-off errors of the multi-
plications are negligible. The round-off error of additions can be taken into account by
statistical rules:

(
σ(s)
)2

=
N∑
n=1

((
ATBδ

)2
n

+

NA∑
k=1

((
Akn

)2(
Az(s)

)2
k

+
(
Akn

)2(
M (s)

)2
n

+
(
Akn

)2(
Bδ

)2
k

)
+

+ α

NR∑
k=1

((
Rkn

)2(
RM (s)

)2
k

+
(
Rkn

)2(
M (s)

)2
n

))
.

Therefore, the discrepancy is calculated reliably if the following condition is true

‖r(s)‖2 � ∆2
(
σ(s)
)2
, ‖r(s)‖2 =

N∑
n=1

(
r(s)n
)2
,

where ∆ — round-off error of a single calculation (e.g., ∆ = 10−16 for calculations with
«double preision» and ∆ = 10−32 calculations with «quad precision»).

Considering also the accumulation of errors and mistakes by steps we can come to
the following stoping criteria of the iterative process [7]. The iterative process have to
be interrupted on iteration with number Noptimal, when the following condition is true

∆2
∑
s=1

((
σ(s)
)2

‖r(s)‖2

)
> 1.

And, finally, we can take into account the rounding error while chousing the regu-
larization parameter via generalized discrepancy principle (4) [8, 9]:

ρ(α) = ‖AhMα
η −Bδ‖2 −

(
δ + h‖Mα

η ‖
)2 −∆2

Noptimal∑
s=1

(
σ(s)
)2

= 0.

As a result, we will be able to suppress the additional volatility and get a solution,
which will be able to trust.

4 Some results of model calculations

As an example we considered the following problem [10]. A ship passes over a system
of triaxial sensors (Figure 1) which measure the value of the induced magnetic field.
According to these values of induced magnetic field it is necessary to restore the mag-
netization parameters over the hull of the ship [1, 2, 3, 4, 10, 11]. This formulation
of the problem is equal to a situation where the ship stands over the system of sensor
arrays (Figure 2).
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Figure 1: The ship passes over the system of triaxial sensors.

Figure 2: The ship stands over the system of sensor arrays.
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Figure 3: Model of the ship.

Figure 4: Parallelepiped segmentation of
the volume of the ship.

Typical dimensions on each spatial variables that correspond to real applications are
Nx = 100, Ny = 15, Nz = 15 (Figure 3 and 4). Input data simulated a real experiment
(in the case of total magnetic intensity data) and correspond to grids Nx = 200,
Ny = 15, Nz = 15, Ns = 4000, Nt = 3, Nr = 2. This corresponds to 67500 unknowns
and 72000 equations.

As a result of implementation of described method a distribution of the magnetiza-
tion parameters over the volume of the ship was obtained. Some results of calculations
are represented on Figure 5 [10]. Input data were specified with error equal to 0,5%.

Conclusion

In this paper we discussed the modern model of identifying of the magnetization pa-
rameters of some object and the features of numerical solving of this problem. Using
magnetic gradient tensor data to invert the interested parameters is rather new in lit-
erature, this is partly due to the fact that the field data is hard to obtain [5]. But this
work could initiate corresponding discussion about some method that are able to help
in solving of the mentioned problem.
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Figure 5: The results of the inversion of the magnetization parameters over the
volume of the ship (it represented 5 slices of the module of inverted vector function
M ).
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