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A PROBLEM OF RECOVERING A SPECIAL TWO-DIMENSIONAL
POTENTIAL IN A HYPERBOLIC EQUATION
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Abstract We consider an inverse problem for partial differential equations of the second
order related to recovering a coefficient (potential) in the lower term of this equations. It
is supposed that the unknown potential is a trigonometric polynomial with respect to one
of space variables with continuous coefficients of the other variable. The direct problem for
the hyperbolic equation is the initial-boundary value problem for half-space x > 0 with zero
initial Cauchy data and a special Neumann data at x = 0. We prove a local existence theorem
for the inverse problem. The used method gives stability estimates for the solution to the
direct and inverse problems and proposes a method of solving them.
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1 Introduction

Inverse problems for hyperbolic equations intensively studied beginning with the second
part of the last century (see [1]-[4], [7]-[13], [17], [21]-]24]). Some of this investigations
were represented later in the books [5], [6], [14]- [16], [18]-[20], [25]-[30]. Uniqueness
and stability of solutions are usually main questions in a study of inverse problems. For
some one-dimension inverse problems existence theorems can be also stated. But for
multidimensional inverse problems such theorems are almost absent. An exception here
is a class of analytical functions. If unknown coefficients and data of an inverse prob-
lem are analytical functions by some of variables, then sometimes the local existence
theorems can be proved (see, for example, [24], [27]). Numerical methods for solving
inverse problems based on the minimization of residual functionals and regularization
procedures were developed (see the books [15], [16], [29] and references therein). Very
often these methods use a finite-dimensional approximation for unknown coefficients
and a finite-dimensional approximation for solutions of direct problems.

Below we consider an inverse problem of recovering a coefficient in the lower term
of a hyperbolic equation. We suppose that the unknown coefficient is a polynomial of
a fixed order with respect to the independent variable y with continuous coefficients
dependent on x. In the next section we formulate the inverse problem and study prop-
erties of the solution of a direct problem. The latter problem contains infinitely many
components of Fourier series for the solution. We demonstrate that for the correspond-
ing infinitely system of equations the method of successive approximations is converged
and allows estimate the solution. In section 3 we prove a local existence theorem for the
posed inverse problem. The presented results give a convenient approach for numerical
solving the inverse problem.
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2 Posing the problem and some lemmas

For the function u(z,y,t) consider the initial-boundary value problem

0*u ou
w—AU—(](ZE,y)U:O, (:E:yat) ER:-))H u|t<0 :Oa % 20 :6(t)’ (1)

where R? = {(z,y,t) € R*|z > 0}. Assume that the potential ¢(z,y) can be repre-
sented in the form of a finite Fourier series

N

a@,y) = 3 qla)e™ (2)

s=—N

with a fixed integer N > 0. Denote by Q(N, L, @) the set of functions ¢(z,y) for which
the coeflicients gs(x), |s| < IV, are continuous functions on the interval [0, L] and satisfy
the conditions

lgs(z)] < Q, z€0,L], —N<s<N. (3)
For q(z,y) € Q(N, L, Q) the solution of the problem (1) is a 27 periodic function of y

and can be represented as a Fourier series

o0

u(z,y,t) = Z U (7, 1)e™Y, (4)

m=—0oQ

where the coefficients u,,(x,t) satisfy the following relations

0? o? 9 l 2
<a_'[;2 — @ +m ) 'me(l’,t) — SZ_:N qs(J:)um—s(xvt) =0, (:L‘,t) < R+;

| 0 Oy,
Um [t<0 = a8
m ) al‘

= 6(t)0om m=0,+1,£2, ... (5)

z=0

In the latter equations R2 = {(z,¢) € R*|z > 0} and doy, is the Kronecker delta.
We shall consider

The inverse problem. Find the coefficients ¢4(x), s = 0,+1,4,...,£N, from
the given

U (0,8) = fin(t), t €[0,T], m=0,41,42,... %N, (6)

where T is a fixed positive number.

We begin studying this problem with consideration of some properties of the solu-
tion to the direct problem (5).

Lemma 2.1. Let T be an arbitrary positive number, q(x,y) € Q(N,T/2,Q) and
D(T) = {(z,t)|0 < o < T —t}. Then the solution to the problem (5) exists and can
be represented in D(T) in the form

U (T, 1) =T (z, ) H(t — ), m=0,£1,£2,.... (7)



34 V.G. Romanov

where H(t) is the Heaviside step-function and G, (x,t) are continuous functions together
with its derivatives up to the second order in the domain D'(T) = {(z,t)|0 <z <t <
T — x}. Moreover, this solution is unique and there exist positive constants C) =
Ci(N,T,Q) and Cy = Co(N,T, Q) such that the following estimates hold

S 1@7
2-1!
Qn+1Tn+1(2N+ 1)ntn+1
2ntl . (n +1)! ’
(z,t) € D'(T), Nn<|m|<(n+1)N, n=0,1,2,...,

‘uo(mut) - 1|

|Um(ﬂf,t)| < Cl

(8)

1
a“ma—(f’t)‘ < (GA+mTIQERN + 1), —N<m <N,
Oy (1) oo QUTITT (2N + 1)t
— < 4 T
ot ‘ s GldmT) 2+2 . (n 1) )
nN < |m|<(n+1)N, n=12,...,, (x,t)€ D(T).

Proof. The representation (7) follows from the well known fact that the solution
to the problem (1) vanishes for all (z,y,t) satisfying the condition x > ¢t > 0 because
the initial data are zero and the boundary source is located on the axis z = 0,t = 0.
Hence, all w,,(z,t) = 0 for x > t > 0. Therefore, u,,(x,t) = Up(x,t) in D'(T). For
the sake of convenience, we continue all functions w,,(z,t), ¢s(z) for x < 0 as even
functions: w,,(—x,t) = uy(z,t), ¢s(—x) = ¢s(z) and define

D(T)={( )t <T—lal}, D(T)={(z,t)[0<|a] <t <T—|af}.

Then the problem (5) is equivalent to the following integral equations

i (2,£) = Gom + / o (m\/(t (- g)?) 3" (€t (€, T)dEdr, (10)

2
s=—N

O(z,t)
(z,t) € D'(T), m=0,%1,%£2,....
Here Jy(() is the Bessel function and

Oz, t) ={(& 7] <7 <t —[¢—=[}.

Recall that the Bessel function J,(¢) for a fixed integer v > 0 is defined by the formula

J(0) = ki) ,f,é,;—_lﬁk), (g)k+

From this formula follows the estimate

v T 2wl

¢l <2. (11)
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Moreover, for the Bessel function the following representation holds:

1 ™

% / efiC cos <p+iu4pdgp7

—T

Ju(C) =

From here follows that
|J,(¢)] < 1forall¢ € R. (12)

Consider for equations (10) the method of successive approximations. Define

= ub(x,1), (13)

where

u?n(x,t) = om,
1 N

i) =5 [ I (VTP @) X a@ub (€ dedr, (19
0(1715) s=—N

(x,t) € D'(T), k=1,2,..., m=0,+1,%£2,....

It is obvious that all functions u* (z,t) are continuous in D’(T'). Moreover, the following
estimates hold

[t (1)

IA

T
Q / Z mrrg%}/%\u & 7)|dr

QTt 1, |m| <N,
2.1 1 0, |m|>N,

IN

mmstT/zmmmxww

l€1<T/2
- 22 .2l 0, |m|> 2N,
(z,t) € D(T).
Continuing these estimates, we easily prove that
T)E,2N +1)F4%* (1, |m| <EN
k < (Q m ) = )

(z,t) € D'(T), k=1,2,....

Since t < T in D'(T) the series (13) is uniformly converged in D'(T) for all m. Hence,
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its sum is a continuous function in D’(T). Moreover, the following estimates hold

)k ltk

= (QT)* 2N 1
luo(z,t) — 1| < Z|u BN y
k=1

. QTt
- 2.1
00 00 k k—14k
el ) < Y b < Y GTEEYE DT
k=n-+1 k=n+1 '
(QT)n+1(2N+1)ntn+l
< on+l . (n + 1)! Cla (17)

(x,t) € D'(T), Nn<|m|<(n+1)N, n=0,1,2,...,

where C} = exp (QT?*(2N + 1)/2). Now differentiating equations (10) with respect to
x and t, we easily check that functions u,,(x,t) are twice differentiable in D'(T). We
check it for the derivatives with respect to ¢t only. The expressions for these derivatives
will be useful in the analysis of the inverse problem. Using (10), we find

oup ety 1 &
U (T, B
Qumle,t) 5/ ZNqs@um St — |z — €l)de
(x—t)/2 =
N
]/ Kt =72 —6) S q(Oun (€ 7)dédr,  (18)
O(xt s=—N

(z,t) € D/(T), m=0,+1,42,....

where

Kt =72 &) = o (my/T— 77— (€

_ _mQ(t_T) Jl(C)’ ]
C C=my/ (t—7)2—(z—£)?

Here J;(() is the Bessel function. Note that J;(¢)/C is a continuous function for all
¢ € [0,00) and J1(¢)/¢ — 1/2 as ( — 0. From the relation (18) we see that the
derivatives Ou,,(z,t)/0t are, indeed, continuous in D’(T) for all m.

To obtain estimates (9), we denote Ju,,(x,t)/0t = vy, (x,t). Since from (11) and
(12) follows that |J;(¢)/¢| < 1/2 for all ¢ € R, we have |K,,(t — 7,z — &)| < m?T/2.
Therefore we can estimate v,,(x,t) as follows

om(z,8)]| < (44 m2T) Q/Z max [um_o(&,7)|dr, (19)

gex(w,t,m)

(z,t) € D’(T), =0,+1,+2,.. .,
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where X(x,t,7) = {&| (&, 7) € O(x,t)}. Using (8) and the obvious inequality C; > 1,
we get that the following estimates hold
Tt Tt
lvo(z,t)] < tQ(2N + 1) <1 + 01;2 2'> <tQ(2N +1)C,y (1 + QT) :
Q2N +1)
4
QTt* Q*T*(2N +1)t?
xmax(1|+2'2!, 52 3] , 0<|m| <N, (20)
Q2N +1) Q"T™(2N + 1)n 1+l
—————~max ,
4 27 (n+1)!
Qn+1T(n+1)(2N 4 1)nt(n+2) Qn+2T(n+2) (2N + 1)n+1t(n+3)
20+l (n +2)! ’ 27+2 . (n + 3)! ) ’
nN < |m|<(n+1)N, n>1, (z,t)€ D(T).

U (z,t)| < (44 m*T?) Cy

[ (z,8)] < Cy(4+m*T?)

Denoting

2 24 1)2
C’zZClmaX<1—|—QT<2év+1>,QT2(22]\;,+ >)7

we come to the estimates

1
O (2, )] < 1(12(4 +m?*THQ(2N +1)t, —N <m <N,
Qn+1Tn(2N+ 1)ntn+1
202 (n 4+ 1)1
nN < |m|<(n+1)N, n=12,..., (z,t)eD(T). (21)

om(@ )] < Cald+m?T?)

which coincide with (9).
It follows from equation (10), that u,,(z, |x| + 0) = do,,. Using this fact and differ-
entiating the equalities (18) with respect to ¢, we obtain

P (v,t) 1 x4+t N r—t
oz 4|\ I\ 73

(@+)/2

1
3 [ 2wt~ o - €Dt
@-ty/2 =N
o @02
—r |z — ¢ qu Unm—s(§;t — v — &[)d§
(z—t)/2 o

S=

N

by [ Knt-ro-0 3 O naan @
O(z,t)

s=—N

(z,t) € D/(T), m=0,+1,£2, ...,



38 V.G. Romanov

where vy, (2.t) = Ouy,(x,t) /0t and

K (t—1,x—& = %Km(t — 7,0 —&)
[ 0

¢

<’2 :H(—m (t—71)2—(x—£)2

We have used here that
2 (49) 40
¢\ ¢ ¢’

where J5(¢) is the Bessel function. Since the function J;(¢)/¢ and J5(¢)/¢? are contin-
uous for all ¢ € [0,00), the function K (¢, ) is continuous for (x,t) € D'(T). Hence,
the second derivatives 9%u,,(z,t)/0t? are also continuous functions in D’(T).
Similarly one can check that the derivatives Ou,,(z,t)/0x and 0*u,,(z,t)/0x0t are
continuous functions in D’(T).
Concluding the Lemma, we note that the uniqueness of the constructed solution
follows from the uniqueness theorem to the problem (1). O

Corollary. If ¢(z,y) € Q(N,T/2,Q) the data (6) of the inverse problem must
satisfy the following requirements

fm(t) € C?0,T), f.(0)=0, m=0,+1,+£2,...,£N,

m

Fo0) =1, fn(0)=0, m==+1,+2 ... £N. (23)
For the problem (5) the following lemma holds.

Lemma 2.2. Let q(z,y) and ¢(x,y) be two arbitrary functions of the set Q(N,T/2,Q)
and Uy, (z,t) and Uy (z,t), m = 0,£1,4+2,..., be the solutions to the problem (5)
which correspond to q(z,y) and §(x,y), respectively. Then there exist constants C3 =
C3(N,T,Q) and Cy = C4(N,T, Q) such that

|U0(I7t) — QQ(ZL', t)| S Cg@t
- Q"T"(2N + 1)ngn+!

<
om(a,t) = ()] < CUQETZET LT (21)
nN <|m|<(n+1)N, n=0,1,2,..., (x,t)€D(T).
Oug(z, 1) 8u0 (x,1)) t?
<
By ‘ < C4Q(2N + 1)2'
Qupm(2,t) 8um (x,1)) (4 +m?THQ"T™ (2N + 1) "2
<
ot ‘ < G n-+2 (n+2)! (25)
nN<|m\<(n—|—1 n=0,1,2,..., (z,t) € D(T).
where
Q= max max |g(z)— d(x)l, (26)

—N<s<N 0<z<T/2
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Proof. Denote
U (2, 1) = up (2, t) — U (2, 1),  Gs(x) = qs(x) — ¢s(). (27)

(
Using the equations (10) with (., ¢s) and (@, s) and extracting one from other, we
find

(1) = 5 SiNO( / | Iy (my/T= 77— (e~ ©7)

[0 ()6, 7) + () (€, T A, (28)
(z,t) € D'(T), m=0,%1,%£2,....

Represent t,,(x,t) in the form

i (2,1) = Y ih (2, 1), (29)
k=0
where
1 N
W) =5 3 [ do (/=T @ OP) alOa(€ gdr, (30)
s:—N<>(17t)
(v,t) € D'(T), m=0,%1,£2,...,
N
i (e, t) =5 > / Jo (m\/(t —7)?—(z— 5)2) qs (&), 1 (€, 7)dEdr, (31)
s= N<>($,t)
(z,t) e D(T), k=1,2,...., m=0+1+42 ...
From here we obtain
y 70 L |
w0l <5 3 0/ [, 7)
@k (z,t)] < rQ i j max |51 (&, 7)|dT (32)
m ? — 2 s:_N 0 |£|ST/2 m—s Y ?

(z,t) € DI(T), m=0,+1,4+2, ... k=1,2,....

Use the estimates (8) for functions ,,(z,t) here. Then we get

_ TQ t QT

e Tt? Q*T?(2N + 1)t3
|ﬂ2n(x,t)|§TQC’1max<£+Qt QTN+ 1) )(2N+1)t,

1! 2.217 22 . 3!
0 < |m| <N,
S ngm ngn+1 212 242
WO(M”STQ Q"T™(2N + 1)™t N (1 Q*T?(2N + 1)*t )

m

y O 27 (n+1)! '22. (n+2)(n + 3)

nN <|m|<(n+1)N, n=12,..., (z,t)ec D(T).
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These estimates we can write it in the more compact form as follows

2N 4+ 1)t
@0, (z,1)] < Q%Cg, —N<m<N,
~ QnTn—H(QN + 1)ntn+1
i) < QEE I e, (33)
nN <|m|<(n+1)N, n=12,..., (xt)€D(T).

For k > 1 we find that

SQNT N + 1)
2k (k1) 7
~ Qn+k( (2N+1>t)n+k+1 QTt
1l < @it
T (2, 1)] < G20 okt k+ 1) o\ 2tk 2)
(z,t) € D'(T), nN <|m|<(n+1)N, n=0,12,....

’llg(.’]),t” < CQ

(34)

Hence,

TENA D op (Qrian + 1)1,

n IN 1 n+1 T2
inte 0] < CQL LI o (1,9 Y exp QTN 4 11). (39

nN <|m|<(n+1)N, n=0,1,2,..., (z,t)e€ D(T).

(. t)] < C2Q

Thus, the estimate (24) holds with

T(2N +1)
2

Ry = Cs max (1, QZQ) exp (QT*(2N +1)) .

For proving (25), we use the relation (18) for (u,, ¢s) and (dy,, ¢s). Subtracting one
from other, we find

~ (@+t)/2
—auméf’t)% / > [06(€)im (&t — 2 = €]) + )t o(€,t — | — €])] €
1)/2 s=—N
/ Kt =72 =€) 3 [0(n-ol67) + AE)ino(6. 7)) dedr, (36)

m=0,+£1,42,..., (x,t)c D(T).

Then

Ol 1) _ 4+ mT? N |
T 2 [ e (@60 Qe 67
s:—NO

m=0,+1,42,..., (x,t) € D(T).
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Using estimates (8) and (24), we find

8u0:z;t ‘ < Q2N +1) (03+01 (1+@))—

4 2!
8um (z,t) Q(4 +m2T*HQ"T™(2N + 1)"t" ¢ +2
— 2n+2 (n + 2
T T QT 2N D)
X (Cg+C’1%max (1—}—624 ,Q + )) (38)
nN <|m|<(n+1)N,n=0,1,2,..., (T).
Hence. estimates (25) hold with
T T Q?*T*(2N+!)?
O4ZC3+01Q—IH&X 1+Q ,Q ( +) .
2 4 4
The lemma is proven. O
3 The existence and uniqueness theorem
Set = 0 in the equation (22) and use the condition (6). Then we obtain
2
1 t
0 = g (5)+ [ 3 atomler - lehae
0 s=—N
s t2
_7/|’£‘ Z QS(g)um75<€7t_ |€Dd£
0 s=—N
N
[ K= 3 a(Qunle e (39)
s=—N

te[0,T], m=0,+1,+2 +N,

where

=0 oy~ (e <e<ipe<r<iog

The equations (10), (19), (39) form the system of integral relations for finding
unknown functions wu,,(x,t), v,(x,t) and ¢s(x) in the domain E/(T). The equa-
tions (10) determine w,, as the operator functions of ¢;, s = —N,..., N, i.e., u, =
U (T, t;9-N, ..., qn). Similarly equations (19) determine v, = v, (z,¢;q-N, ..., qN).
Then the equations (39) we can consider as the operator equations

() = Am(z59-N,- .., qn), m=0,£1,....£N, x€][0,7/2], (40)
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where operators A,,(x;q_n,...,qn) are defined by the formulae

r N
A (254N qy) = oy (2) —2/ > @(Qvm-o(&,20 — €5 q N, - v )dE
0 s=—N

z N
o / 1S () ttmo(€, 20— [El: g, - an)dE
0 s=—N

N

-2 / K 2z —1,§) Z 0s()tm—s (&, 50N, - - -, qn )dEdT, (41)
>(2z)

s=—N

r€[0,7/2], m=0,+1,42 +N,
and
@ (z) =2f"(2x) C Cl0,T/2], m=0,+1,+£2 +N. (42)

Denote by Qy(N, L, Qo) the set of functions ¢s(s), —N < s < N, satisfying the condi-
tions
lam = gullown < Qo Qo= max lallcpe, m=0,+1,£2,EN. (43)

If functions ¢, € Qo(N, L, Qo) for —N < s < N then, obviously, ¢, € Q(N, L,2Qo).
For the operator equations the following theorem holds.

Theorem 3.1. Let the data (6) satisfy the conditions (23) and

. "

F=_mas | falcon m
Then there ezists a number Ty € (0,T] such that the operator equations (40) have one
and only one solution on the set Qy(N,Ty/2,2F).

Proof. It is obviously that Qo = 2F. We prove that operator A = (A_n, ..., An)
maps the set Qu(NV,7/2,2F) into itself and it is a contracted operator if T satis-
fies a smallness condition. Let ¢, € Qo(N,T/2,2F), —N < s < N. Then ¢, €
Q(N,T/2,4F), —N < s < N. Then from relations (40) we obtain

T

|@m () = @y (2)] S 8FEN +1) [ max |vm_(&, 22— [¢[;q-n, - an)ldg

—N<s<
0

2 _ .
PN+ DN (16 max fn-o(€20 = [el g aw)ldg
0

+8F(2N + 1) / K (20— 7.8) max |um o(671 0 nre s qu)dedr,  (45)

—N<s<N
>(2z)

x€[0,7/2], m=0,£1,+2, +N.
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Estimate first the function K/ (2x — 7,§). Since from (11) and (12) follows that

MO 1 | R 1
¢ |72 ¢ |4
for all ¢ € R, then the following estimate holds
2 2 2T2
K0 -7 < PP e e, se 0T/ (46)

4 )
Then from (45) we get

lgm(z) — ¢° (x)| < 4F(2N +1)T max max

Ny ¢ B 16 TR )]

1 2 \72 22 ,
+§F(2N—|—1)T N*[4+ N°T ]_2]&22)%2]\[(57})%%)/(@)\uj(5,7|7q_N,...,qN)\, (47)

x€10,T/2], m=0,+1,+2 +N.

For functions u,,(x,t;q_n,...,qn) and v, (z,t;g_n, ..., qn) the estimates (8) and (9)
valid with () = 4F. Using them, we find

lgm(z) — % (2)| < 8F?(2N + 1)°T*Comax(1,2FT*(2N + 1))
1
+5F2N + DT?N?[4 + N*T?|Cy max(1 + 2FT? 2F*T*(2N + 1)) (48)
= 2FT?C5(N, T, F), (49)
z€[0,7/2], m=0,+1,42,£N.

1
1

Choosing 177 = T1(N, F) as a positive root of the equation
T?C5(N,T,F) =1,
we obtain that
gm () — ¢°(2)] < 2F, 2 €[0,T1/2], m=0,41,+2,+N,

i.e. the operator A = (A_y,..., Ay) maps the set Qo(N,T1/2,2F) into itself.

Let us demonstrate now that this mapping is contracted if 7' < T} and it is enough
small. Let (¢_n,...,qn) and (G_n,...,Gn) be two solutions of the inverse problem
belonging the set Qy(N,T/2,2F'). Denote corresponding them solutions of the problem
(10) by u,, and ,,, respectively, and its derivatives with respect to t by v, and 0y,.
Then we can write relations (40) for (¢_u,...,qn) and (¢_n, ..., qy). Denoting

ﬂm = Um — ﬁma 77m = Um — @ma q~m =4m — qu7 Q = —Nrgiz}iNxer%aT)EZ] |q~m(x)‘7
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we find
r N
() = 2 / S L0 ()0m (6,20 — [E]) + G4(€)Tmo 6, 22 — €D
s=—N
+m/|s|2 Bt s(€, 20 — [€]) + G4(€) (€, 20 — €]
N
2 [ Ko =19 Y @dOuns(67) + 1Ot TN, (50)
s=—N
€[0,7/2], m=0,+1,+2 +N.
From here
@u(@) STEN+1) max, - max - |Qluy(€,7)] +4F(5;(6.7)]]
T?N?(4 + N?T? ~
AN 0N 1) mas  mas Qe )| +4FE D], G

v €[0,T/2], m=0,+1,+2 £N.
Using estimates (8), (9) and (24), (25), we find

|G ()| < 2T%*(2N + 1)2FQ(1 + N?T?)[2C, + C4T] max(1, FT?)

+T2N2(4; NTT) 2N +1)Q
)]

x [Cymax(1 4+ 2FT? 2F*T*(2N + 1) + 4FC3T max(1, FT(2N + 1))
= QT*C4(N, T, F), (52)
€[0,7/2], m=0,41,+2 +N.

Set a fixed p € (0,1) and define T, = T5(N, F|, p) as the posirive root of the equation
T?Cs(N, T, F) = p. (53)
Then for T' < 75 the estimates hold
()] < pQ, x€[0,7T/2], m=0,+1,42 +N. (54)

It means that operator A = (A_y,..., Ay) is contractive on the set Qq(N,T5/2,2F).
Taking Ty = min(73, T) we get that this operator maps the set Qg (N, Ty/2,2F) into
itself and it is a contracted operator on this set. By the Banach’s principle the operator
equation (40) has one and only one solution on the set Qy(N,Ty/2,2F). O
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