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Abstract A problem of reconstruction of singularities of given in a unit disk scalar and
vector fields is investigated. The Radon and ray transforms serves as initial date for the
problem. Tools of mathematical modeling and numerical experiments are applied. Specially
the task of visualization of lines of the fields and their derivatives breaks is considered. We
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integral operators of back-projection and angular moments. Suggested approaches serve as a
basis for the algorithms which are realized numerically and investigated by simulation tests.
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Introduction

A rapid development of tomographic methods in science investigations and medical
diagnostic, which began in the second half of XX century, was due to two significant
achievements. At first it is the invention of methods of the signal detection allowing to
assume that signal propagates along the line. Secondly, it is the extension of fast-acting
computers, which enable to process large amounts of data. Development and extension
of applications of tomography continues nowadays and captures new areas of human
activity.

Mathematical foundations of tomography were laid in the articles [1], [2], where
inversion formulas for the problem of integral geometry, posed on the plane, in the
space, and on the sphere S2 were obtained. The idea of these formulas was to specify
the sequence of actions in order to find unknown function given on the plane, in the
space or on the unit sphere by known integrals calculated over all straight lines (on the
plane); over all planes (in R3); along all big circles of the sphere S2, respectively.

Let’s emphasize main features and characteristics of tomographic methods. The
distinctive and attractive feature of these investigations is that measuring methods do
not destroy the object. In the vast majority of mathematical models in tomography the
ray approximation is used. Information about the medium is “accumulated” along the
ray and is registered at the output. The inalienable feature of tomography is multiple
measurements of the same type, which allows to obtain the enough data capacity. By



Mathematical models and algorithms for reconstruction of singular support... 5

virtue of incorrectness of the tomography problem the insufficiency of the data leads
to the great arbitrariness in the solution, and the measurement uncertainties lead to
its instability.

The significant extension of application areas and statements of the tomography
problems have led to the appearance of its varieties such as vector, tensor, refraction
one. The becoming and the rapid development of the listed divisions of tomography
is largely based on the ideas, statements and results of integral geometry developed
in the framework of more general theory of inverse and ill-posed problems. The term
“integral geometry” means certain class of inverse problems, closely connected with
geometrical objects in the space of arbitrary dimension, see for example [3], [4], [5], [6],
[7], [8], [9], [10], [11], [12]. A powerful incentive for the development of statements of
integral geometry was geophysical investigations, [13]. With a formation of tomography
as independent natural science and practical discipline the statements and results of
integral geometry turned out to be claimed in many areas connected with researches
by nondestructive methods.

A large variety of algorithms are used for solving tomography problems. We shall
mention main mathematical tools on which they are founded. Above all we note
inversion formulas which are a basis of a family of algorithms known as algorithms
of convolution and back-projection, [14], [15], [16]. A development of the mentioned
approach led to the algorithms of Davison-Grunbaum, Masih-Nelson, ρ-filtration back-
projection, Marr and others, [17]. Secondly, the other class of algorithms is based on
the projection theorems, [18], [19]. Thirdly, algebraic methods, see [20], [21], got wide
expansion.

Most part of algorithms may be applied not only to the problems of scalar but also
to the problems of vector and tensor tomography. However, a few exceptions, almost
all of them may be applied only in the frameworks of mathematical models for mediums
without refraction. But if the refraction phenomenon is included in a mathematical
model of the medium then the list of useful mathematical instruments becomes poor.
We note two of these methods. The first one is the least square method which may
be applied for solving problems where initial data are the integrals along curves, and
in particular along geodesics of Riemannian metric. The second one is a method of
singular value decomposition.

A problem of breaks reconstruction. There are a lot of practically impor-
tant natural and technical areas with investigated objects mathematically described
by breaking values. The objects of such kind arise in tomographic problems often.
Thus, a detection of cracks in manufactured products by nondestructive control is no
less important task then a reconstruction of its internal structure. In many geophysical
problems determination of boundaries locations, which separates blocks with different
physical properties, often is the first stage for further researches.

An exact description of objects with breaks in the frameworks of integral geometry
was proposed in the monograph [4], and then, for example, in articles [22], [23]. An
application of numerical methods and algorithms developed for the reconstruction of
smooth (at least differentiable) functions gives an unsatisfactory results in a case of
discontinuous functions. One way for reconstruction of this function is to apply well-
known in tomography algorithmic tools, but it is necessary extremely to increase the
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amount of initial data and the calculation accuracy. The second way is to develop
special algorithmic tools for reconstruction of such functions. It is possible to describe
the posed problem by listing the stages of its solving: a) a visualization of a set of
break points of a function under investigation; b) a localization of this set and its
approximate description in frameworks of discrete model of the investigated object; c)
a determination (by the set of break points was found on previous steps) of values of
the jump characterizing the break; d) an elimination of breaks and reconstruction of
the auxiliary function without breaks; e) a reconstruction of the initial discontinuous
function with usage of the previously found jump values.

A term “visualization of breaks” means an obtaining the picture with well-recognized
set of break points of the function. It may be sharp boundary in color or gray-scale
images, or sharp increase of function near break points if the image is presented by
relief. Under localization of a set of break points we assume its rigorous description
in mathematical terms. For example, approximate determination of coordinates of
break points and assignment (by equations) of the approximation of lines or surfaces
consisting of break points.

The problem of determination of the jump value at the break point is clear and does
not require additional clarification. Items d) and e) are closely connected. In essence it
requires to construct the function eliminating breaks and to use it twice. It should be
noted that in overwhelming majority of articles the item a) is meant as the problem of
breaks reconstruction. This qualitative information is often enough in many practical
tasks. In several articles the problem of determination the jump values is considered.

The first approach to the visualization of a set of break points of a function by its
Radon transform was proposed in [24]. Its sense consists in double differentiation with
respect to s (|s| is a distance from the origin to the line along which the integration is
held) of the Radon transform followed by usage of the back-projection operator. This
sequence of actions was named Vainberg operator. The application of the operator does
not give the sought-for function, in opposite with inversion formulas, but leads to the
visualization of the set of break points. In [5] following justification of application of
the Vainberg operator was proposed. Namely, this operator reconstructs a function
(−∆)1/2f (∆ is Laplace operator). Since (−∆)1/2 is elliptic pseudo-differential opera-
tor, then function (−∆)1/2f has the same singularities as f . This idea may be designed
for inversion the Radon transform Rf of non-smooth function f . We have to check
only that the Radon transform of the Laplace operator ∆ (on functions f(x, y)) turns
into the operator ∂2/∂s2 (on functions (Rf)(α, s)). Thus if we have now a distribu-
tion f , presented in the form f = (1 −∆)kp (where p has necessary smoothness, k is
natural), then we can determine the Radon transform of function f as a convolution
F ((1 + s2)k) ∗ (Rp). After calculating the convolution Rf with (1 + s2)−k we ob-
tain sufficiently smooth function Rp. By means of an inversion formula for the Radon
transform we find function p and then, applying to the last one the differential operator
(1−∆)k, we obtain sought-for function f .

Further development of methods and algorithms for reconstruction of the set of
break points was suggested, for example in [25], [26], [27], [28]. In the papers the inver-
sion operator (−∆)1/2 in combination with regularization or certain filtration was used
alongside with the Vainberg operator. The main goal of researches was to reconstruct
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the set of break points as well as to determine some average characteristics of smooth
part of the object.

At the end of 90-th years one more approach to the solution of the problem of
determination of the set of functions breaks by the Radon transform was proposed.
The approach is based on the theory of multidimensional singular integrals [29]. After
an application of the back-projection operator to the Radon transform and then a
differentiation with respect to spacial variables leads to logarithmic increase of the
result as the point tends to a break line. In particular, the operator |∇(·)| may be
used, [30], [31], [23].

A reconstruction of singular support. Recent years due to intensive progress
of vector and tensor tomography the statement of the problem of breaks reconstruction
was significantly generalized (see for example [32], [33]), and nowadays it may be inter-
preted as the problem of reconstruction of singular support of symmetric tensor fields
by their known ray transforms. The singular support means a set of points of a field
in which a condition of its infinite smoothness is broken. Consequently, the problem
of breaks reconstruction is posed not only for the fields but also for their derivatives.
A generalization of the problem of reconstruction of breaks for function leads to the
necessity of development suitable methods and algorithms for reconstruction of the set
of points of singular support of tensor fields by their ray transforms, or more widely,
by tomographic data.

As for the problem of reconstruction of discontinuous functions there exist several
ways for the reconstruction of the singular support of tensor fields by their known ray
transforms. The first is to apply well-known in tomography algorithmic tools, taking
into account its modification, for the reconstruction of vector or tensor fields, probably
given in media with refraction. Numerical tests show that the recovering accuracy
of non-smooth objects, in comparison with continuous, is in 5–10 times worse. As
for the problem of reconstruction of discontinuous functions, it is necessary to have
sharply increasing amount of initial tomographic data and therefore increase of time
of computations for achievement of acceptable accuracy of results. The second way is
to design special algorithmic tools for the reconstruction of the singular support of a
tensor field. The approach is similar to the approach for the discontinuous functions.
It is described in details at items a)–e) above.

There is the third way for reconstruction of vector and tensor fields with nonempty
singular support. The way cannot be applied to the problem of reconstruction of
singular support of a function. Namely, we say about the reconstruction of potentials
of fields. It is known that the smoothness of potentials is more than the smoothness
of the fields themselves. As the potentials are at least continuous, an accuracy of their
reconstruction by usual tools is in 5-10 times better then the accuracy of reconstruction
of the fields, generated by these potentials. Let’s note that the problem of visualization
of a set of points of singular support of a tensor field is correct. It is clear from
the statement in which nonlocal pseudo-differential operator is replaced by the local
differential one. Mathematical description of the set of singular support requires to
use approaches essentially differing from others usually used in tomography. This is
due to the considered problem inherently refers to the problem of pattern recognition
and latter of data approximation. Probably the problem concerns such mathematical
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subjects as statistic data analysis, description of classes of objects, etc.
We represent short content of the article. Introduction contains main theses, featu-

res and facilities of tomography. We pay attention on main mathematical approaches
and developed in framework of tomographic statements numerical methods and algo-
rithms. The problem of reconstruction of discontinuous functions, and then a single
support of functions and vector fields is discussed in more details. In section 1 we
represent preliminary tools such as main operators and transforms of tensor tomogra-
phy. Section 2 contains the ways of the operators of breaks indicators construction for
the functions and vector fields. The algorithms for breaks reconstruction of functions,
vector fields and their derivatives as well as the results of numerical simulations are
sated in section 3. Section 4 is devoted to the numerical results of reconstruction of
singular support of functions and vector fields. Conclusion contains a summary, some
questions and directions of further investigations.

The article presents a review based in the main on the results of the authors pub-
lished partially at [33], [34], [35], [36], [37].

1 Preliminary definitions and results
Let’s introduce following designations: B = {(x1, x2) ∈ R2 | (x1)2 + (x2)2 < 1} is a

unit disk with center in the origin; ∂B = {(x1, x2) ∈ R2 | (x1)2 + (x2)2 = 1} is a unit
circle; Z = {(α, s) ∈ R2 : α ∈ [0, 2π], s ∈ [−1, 1]} is a cylinder [−1, 1] × [0, 2π]. Unit
vectors ξ ∈ ∂B, ξ = (cosα, sinα), η := ξ⊥ ∈ ∂B, η = (− sinα, cosα) and a real number
s ∈ R specify a line Lξ,s in the form of normal equation x1 cosα + x2 sinα− s = 0, or
parametric equations x1 = s cosα− t sinα, x2 = s sinα + t cosα.

We denote functions (scalar fields) as f(x), g(x), .... For potentials specifying tensor
fields we use designations ϕ(x), ψ(x), χ(x), .... It is assumed that they are given in
B ⊂ R2. Designations x = (x1, x2), y = (y1, y2),. . . are convenient for the statement of
the problems and formulations of properties of tensor fields, but sometimes, especially
at description of numerical tests, we use designations (x, y) also. A set of given in B
symmetric m-tensor fields w(x) = (wi1...im(x)), u(x) = (ui1...im(x)), v(x) = (vi1...im(x)),
. . ., i1, . . . , im = 1, 2, has a designation Sm(B). Scalar product in Sm(B) is established
by the formula

〈u(x), v(x)〉 = ui1...im(x)vi1...im(x),

where the summation over repeating top and bottom eponymous indexes from 1 to 2
is meant. We use the covariant components of tensor fields below.

We would like to remind the notations for functional spaces. There are the spaces
of functions integrable with square L2(B), symmetric m-tensor fields L2(S

m(B)), L2-
space L2(Z). Symmetric m-tensor fields u, v are elements of L2(S

m(B)) with scalar
product

(u, v)L2(Sm(B)) =

∫
B

〈u(x), v(x)〉dx.

Spaces of differentiable (with the finite order k) symmetric m-tensor fields are denoted
as Ck(Sm(B)), Ck

0 (Sm(B)). Sobolev spaces are denoted as Hk(Sm(B)), Hk
0 (Sm(B)),

Hk(Z), and are defined as usual, m = 0, 1, 2, . . . ; k = 0, 1, . . . . Somewhere below we
use the spaces of basic functions D(B), D(R2), and Schwartz spaces S, S ′.
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We consider following classes of discontinuous functions, vector and tensor fields.
Let a domain D ⊂ R2 (probably multiply connected) be such that D ⊂ B consists of
finite number of nonoverlapping subdomains {Di}, i = 1, . . . , N , with the dense in D
union D0 = ∪Di. The boundaries belong to C1-class of smoothness. It is easy to see
that ∂D ⊂ ∂D0 and the boundary ∂D0 coincides with the union of boundaries ∪Di

of subdomains Di, i = 1, . . . , N . Three classes of functions in D ⊂ B are considered.
The first one is C−1(B). It contains functions with breaks at the points (x, y) ∈
∂D0. The first class serves for description of discontinuous scalar fields. The second
class C0(B) consists of continuous functions with discontinuous first derivatives at the
points belonging the set (x, y) ∈ ∂D0. This class of functions are the potentials for
discontinuous vector fields. Finally, the third class C1(B) consists of the functions with
continuous derivatives and discontinuous second derivatives at the points (x, y) ∈ ∂D0.
The functions are the potentials for discontinuous symmetric 2-tensor fields. All breaks
are assumed to be breaks of the first kind as it is clear from physical considerations.
Below we skip the symbol “B” in designations of classes of functions. The potentials
ϕ(x, y), ψ(x, y), χ(x, y), . . . from Ck, k = −1, 0, 1, are defined in B, vanish at the set
B \D, and their support coincides with closure of D, suppϕ = D. The potentials are
infinitely differentiable at the points (x, y) ∈ D. As for the points belonging ∂D0, so all
partial derivatives ∂lϕ/∂xj∂yl−j, l = 0, . . . , k, j ≤ l, up to the order k, are continuous,
but the derivatives of k + 1 order have breaks. We say that function ϕ is the potential
of Ck-smoothness or Ck-potential in R2. We remind that k takes values from −1 to
1. In general an increase of k leads to increase of smoothness of corresponding scalar,
vector and 2-tensor fields.

1.1 The operators of tensor tomography

Operators of inner differentiation d and orthogonal inner differentiation d⊥ are
generalizations of operators of gradient and orthogonal gradient. The operator of inner
differentiation d : Ck(Sm) → Ck−1(Sm+1), k ≥ 0, acts on symmetric m-tensor field w
and gives symmetric (m+ 1)-tensor field u by the rule

ui1...imj := (dw)i1...imj =
1

m+ 1

(∂wi1...im
∂xj

+
m∑
k=1

∂wi1...ik−1jik+1...im

∂xik

)
.

The operator d⊥ : Ck(Sm) → Ck−1(Sm+1), k ≥ 0, of inner orthogonal differentiation
acts by the rule

vi1...imj := (d⊥w)i1...imj =
1

m+ 1

(
(−1)j

∂wi1...im
∂x3−j

+
m∑
k=1

(−1)ik
∂wi1...ik−1jik+1...im

∂x3−ik

)
.

Here w ∈ Ck(Sm), u, v ∈ Ck−1(Sm+1), k ≥ 0. Operators of divergence δ and orthogonal
divergence δ⊥, δ, δ⊥ : Ck(Sm) → Ck−1(Sm−1), k ≥ 0, act on symmetric m-tensor field
w,

ui1...im−1 := (δw)i1...im−1 =
∂wi1...im−1j

∂xj
≡
∂wi1...im−11

∂x1
+
∂wi1...im−12

∂x2
,

vi1...im−1 := (δ⊥w)i1...im−1 = (−1)j
∂wi1...im−1j

∂x3−j
≡ −

∂wi1...im−11

∂x2
+
∂wi1...im−12

∂x1
,
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and give the symmetric tensor fields u, v of m− 1 rank.
Operators of ray transforms P(j)

m : Ck(Sm)→ Ck(Z), j = 0, 1, 2, k ≥ −1, acting on
symmetric tensor field w = (wi1,...im) and converting them to the functions g(j)(ξ(α), s),
defined on the cylinder Z, are specified by the expression

(
P(j)
m w

)
(ξ, s) =

∫ ∞
−∞

wi1...imξ
i1 . . . ξijηij+1 . . . ηimdt, (1)

ξ = (cosα, sinα), η = (− sinα, cosα). At j = 0 it is longitudinal ray transform
P , and integrand includes the components of direction vector (for a line along which
integration is hold) η only.

(
Pw
)
(ξ, s) :=

(
P(0)w

)
(ξ, s) =

∫ ∞
−∞

wi1...imη
i1 . . . ηimdt;

At j = m it is transverse ray transform P⊥, and the integrand includes the components
of the normal vector ξ only.

(
P⊥w

)
(ξ, s) :=

(
P(m)w

)
(ξ, s) =

∫ ∞
−∞

wi1...imξ
i1 . . . ξimdt.

For one of j, j = 1, 2, . . . ,m − 1, it is mixed ray transform P(j)
m . It includes the

components of both normal and direction vectors.
We state formulas for differentiation operators of the image of ray transform (1)

with respect to its arguments s and α. As
(
P(j)
m w

)
(α, s) ∈ Ck(Z), k ≥ 0, is a function

depending on s and the angle α, so

D(l)
s (α, s) :=

∂l
(
P(j)
m w

)
(α, s)

∂sl
, D(n)

α (α, s) :=
∂l
(
P(j)
m w

)
(α, s)

∂αn
,

for l, n ≤ k + 1.
Operator of (n, l)-angular moment maps functions h(ξ(α), s) given on the cylinder

Z into symmetric n-tensor fields given in R2 according to the rule

(
f (l)
n

)
i1...in

(x, y) =
1

2π

∫ 2π

0

ξi1 . . . ξilηil+1 . . . ηinh
(
ξ(α), s(x, y, α)

)
dt.

Here ξ = ξ(α), η = η(α), s = s(x, y, α) := x cosα + y sinα. Back-projection operator
is a special case of the operator of angular moment. Let the image g(j)m (ξ(α), s) of
the mixed ray transform

(
P(j)
m w

)
(ξ, s) of symmetric m-tensor field be given. Then

back-projection operator
(
P
)#

: Ck(Z) → S ′(Sm) is posed by the equation

(
µ(j)
m

)
i1...im

(x, y) =
1

2π

∫ 2π

0

ξi1 . . . ξijηij+1 . . . ηimg(j)m
(
ξ(α), s(x, y, α)

)
dt,

where S ′(Sm) — Schwartz space of slow-growing at infinity symmetric m-tensor fields.
In other words,

(
µ
(j)
m

)
(x, y) =

(
P#(P(j)

m w
)
(x, y).
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The operators of differentiation D(l)
s and D(n)

α , angular moment and back-projection
act on images of ray transforms. The listed above operators of tensor analysis d, d⊥,
δ, δ⊥, act on symmetric tensor fields

(
f
(l)
n

)
i1...in

(x, y) or
(
µ
(j)
m

)
i1...im

(x, y), which are the
results of an application of the operators of angular moment or back-projection.

The Radon transform and its inversion. Let a function ϕ(x), x = (x1, x2), be
given in B, ϕ(x) ∈ Ck(B). The Radon transform Rϕ of function ϕ,

(Rϕ)(ξ, s) =

∫ ∞
−∞

ϕ(sξ + tξ⊥)dt (2)

are the integrals along straight lines Lξ,s = {x ∈ R2 | ξ1x1 + ξ2x2 = s}.
Let g(ξ, s) ∈ Ck(Z), g(ξ, s) = (Rϕ)(ξ, s) be the Radon transform for some function

ϕ ∈ Ck(B). Substituting (2) into the formula

f(x) = (R#g)(x) =
1

2π

∫ 2π

0

(Rϕ)(ξ(α), x1 cosα + x2 sinα) dα,

for back-projection operator, we obtain

f(x) =
1

2π

∫ 2π

0

(∫ ∞
−∞

ϕ(sξ + tξ⊥) dt

)
dα,

and then, after changing variables the representation

f(x) =
1

π

∫ ∞
−∞

ϕ(y)

|x− y|
dy (3)

for f(x) as a convolution, f = ϕ∗|x|−1/π. After application of the Fourier transform to
both parts of (3) and using the convolution theorem we come to the expression F [f ] ≡ f̂

= ϕ̂ · h, where ϕ̂ ≡ F [ϕ], h =
(
|x|−1

)̂
, from which ϕ̂ = f̂ / h. The application of the

inverse Fourier transform leads to the simple inversion formula

ϕ(x) =
1

2

∫ ∞
−∞

f̂(y)

h(y)
ei〈x,y〉 dy,

which is a base of the simple algorithm with a usage of the Fourier transform (direct
and inverse).

In the articles of applied nature the following inversion formulas are well known,

ϕ(x1, x2) = − 1

4π2

∫ 2π

0

∫ ∞
−∞

(Rϕ)
′
s(α, s+ x1 cosα + x2 sinα)

s
ds dα, (4)

ϕ(x1, x2) =
1

4π2

∫ 2π

0

∫ ∞
−∞

(Rϕ)
′′

ss(α, s+ x1 cosα + x2 sinα) ln |s|ds dα, (5)

ϕ(x1, x2) = − 1

4π2

∫ 2π

0

∫ ∞
−∞

(Rϕ)(α, s+ x1 cosα + x2 sinα)

s2
ds dα.

The integrals with respect to s are meant in the sense of the Cauchy principal value.
Versions (4), (5) of inversion formulas may be directly used for reconstruction of po-
tentials of vector and symmetric 2-tensor fields, respectively. Wherein the derivatives
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with respect to s of Radon transforms of corresponding potentials are replaces by
longitudinal or transverse ray transforms of vector or tensor fields.

The ray transforms of vector field and inversion formulas. We remind that
a vector field u ∈ Hk(S1) is potential if there exists a function ϕ ∈ Hk+1 (potential)
such that u = dϕ. A field v ∈ Hk(S1(B)) is solenoidal, if δv ∈ Hk−1(B) = 0. For
every solenoidal vector field v there also exists a potential ψ ∈ Hk+1(B) such that
d⊥ψ ∈ Hk(S1(B)) [38]. A vector field dh ∈ Ck(S1(B)) is called the harmonic vector
field if h is a harmonic function in B.

The (Helmholtz) decomposition of a vector field into potential and solenoidal parts
is an important result in vector tomography. The more detailed decomposition into
three parts [38], [39], [40], is called the Helmholtz-Hodge theorem. Namely, for every
vector field w ∈ H1(S1(B)) the unique decomposition

w = v + dh+ dψ, δv = 0, ψ |∂B = 0, 〈v, ν〉 |∂B = 0, (6)

is valid. Here dψ is potential, v is solenoidal, and dh is harmonic vector field; ν is
external normal to the boundary ∂B, v ∈ H1

0 (S1(B)), ψ ∈ H2
0 (B).

The vector field ws = v + dh is solenoidal (h is harmonic function), and thus (6)
may be rewritten as

w = ws + dψ, δ ws = 0, ψ |∂B = 0.

Combining dh and dψ, u = dh+ dψ = d(h+ψ) = dψ̃, we obtain the other modification
of decomposition (6),

w = v + dψ̃, δ v = 0, 〈v, ν〉 |∂B = 0.

There are only two types of ray transforms, acting on vector fields. They are
longitudinal ray transform of vector field v(x),

(Pv)(η, s) =

∫ ∞
−∞

〈
η, v(sξ + tη)

〉
dt =

∫ ∞
−∞

(η1v1 + η2v2)dt, (7)

and transverse ray transform of the field u(x),

(P⊥u)(ξ, s) =

∫ ∞
−∞

〈
ξ, u(sξ + tη)

〉
dt =

∫ ∞
−∞

(ξ1u1 + ξ2u2)dt. (8)

As usual ξ is the normal vector, and η is the vector of direction of the straight line,
along which the integration is hold.

For vector fields from the class of Ck-potentials we obtain the following form for the
decomposition (6),

w = d⊥ϕ+ dψ, ψ |∂B = 0, ϕ |∂B = 0,

without the harmonic vector field.
A dependence on initial information is emphasized in the formulated below state-

ments for the problems of vector tomography.
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1. To reconstruct solenoidal part v of unknown vector field w by its known longi-
tudinal ray transform.

2. To reconstruct potential part u of unknown vector field w by its known transverse
ray transform.

3. To reconstruct unknown vector field w completely by its known ray transforms,
i.e. by longitudinal and transverse ray transforms.

The properties, kernels, images and relations between ray transforms of vector field
and Radon transforms of their potentials are detailed in [41]. It contains also the
inversion formulas for the components of a symmetric m-tensor field. Here we state
only the inversion formulas giving the potential of a vector field, since this way is one
of suitable for reconstruction of discontinuous objects.

The back-projection operator P#
1tf applied to the image g(η(α), s(x, α)) of longitu-

dinal ray transform (Pw)(η, s) of vector field w, (Pw) = g, is defined as

µ(x) = P#
1tf

(
(Pw)(η(α), s(x, α))

)
(x).

The components are

µj(x) =
1

2π

∫ 2π

0

ηj(Pw)(η(α), s(x, α))dα, j = 1, 2, (9)

s(x, α) = x1 cosα + x2 sinα. As a result of the action of this operator we have the
solenoidal vector field µ for any field w. The back-projection operator applied to the
transverse ray transform h(ξ(α), s(x, α)) = (P⊥w)(ξ, s) of a field w gives the potential
vector field λ,

λ(x) =
(
P⊥
)#
1tf

(
(P⊥w)(ξ(α), s(x, α))

)
(x) (10)

with components

λj(x) =
1

2π

∫ 2π

0

ξj(P⊥w)(ξ(α), s(x, α))dα, j = 1, 2. (11)

In terms of the vector fields µ, λ we can write simple inversion formulas,

v = (−∆)1/2µ, u = (−∆)1/2λ,

where v is solenoidal part of vector field w, and u is potential part of w.
With usage of the relations between the ray transforms of a vector field and the

Radon transforms of its potential one can get inversion formulas reconstructing the
potential of the vector field by its known longitudinal (transverse) ray transform. We
state, for example, the inversion formulas for the potential ϕ of solenoidal part v of a
field w,

ϕ(x1, x2) = − 1

4π2

∫ 2π

0

∫ ∞
−∞

(Pw)(α, s+ x1 cosα + x2 sinα)

s
ds dα,

ϕ(x1, x2) =
1

4π2

∫ 2π

0

∫ ∞
−∞

(Pw)
′

s(α, s+ x1 cosα + x2 sinα) ln (s)ds dα.
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On the base of the reconstructed potential ϕ the solenoidal field v = d⊥ϕ may be
constructed easily. For this we need to differentiate the potential ϕ and then to find
the components v1 = −∂ϕ/∂x2, v2 = ∂ϕ/∂x1 of the field v. The same inversion
formulas may be used also for the reconstruction of the potential ψ of the potential
field dψ. Then we find the components u1 = ∂ψ/∂x1, u2 = ∂ψ/∂x2 of the field u.

2 Indicators of inhomogeneity and breaks

The aim of the section is to construct the operators of indicator of breaks allowing to
distinguish a set of break points by known Radon or ray transforms. We use differential
operators of tensor analysis, integral operators of angular moment and back-projection
for solving the problem.

2.1 The operator of indicator of function breaks

Let’s consider a problem clarifying the idea of application of differential operators
for reconstruction of breaks of a function. For this purpose a behavior of the breaks
indicator for the characteristic function of the circle is investigated,

ϕ(x, y) =

{
C, x2 + y2 < 1,
0, otherwise, (12)

where C > 0 is a constant. Radon transform of function (12) is known, (Rϕ)(ξ, s) =
2C
√

1− s2. A distance from a line, passing through a point (x, y) ∈ B and defined
by the normal vector ξ = (cosα, sinα), is equal to s = |x cosα + y sinα|. Suppose
x = ρ cos γ, y = ρ sin γ for 0 ≤ γ < 2π, ρ < 1. Then

√
1− s2 =

√
1− ρ2 cos2(α− γ).

An application of the back-projection operatorR# and variables change α = π/2+γ−χ
give

µ =
1

π

2π∫
0

√
1− ρ2 cos2(α− γ)dα.

Properties of the integrand imply that the last expression can be written in the form

µ =
4C

π
E(ρ) =

4C

π

π/2∫
0

√
1− ρ2 sin2 χdχ, (13)

where the integral is complete elliptic integral of the second kind E(ρ),

E(ρ) =

π/2∫
0

√
1− ρ2 sin2 χdχ.
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By means of its series expansion with respect to ρ, 0 ≤ ρ ≤ 1, [42]

E(ρ) = 1 +
1

2

(
ln

4√
1− ρ2

− 1

1 · 2

)
(1− ρ2) +

+
12 · 3
22 · 4

(
ln

4√
1− ρ2

− 2

1 · 2
− 1

3 · 4

)
(1− ρ2)2 +

+
12 · 32 · 5
22 · 42 · 6

(
ln

4√
1− ρ2

− 2

1 · 2
− 2

3 · 4
− 1

5 · 6

)
(1− ρ2)3 + ...

(14)

we obtain that E(ρ) → 1 at ρ → 1, and hence µ → 4C/π at ρ → 1. The same
conclusion can be made if we suppose ρ = 1 in (13). Then the integral is expressed in
terms of elementary functions, and we obtain the same value for µ which was obtained
with usage of the limit transition.

Now we investigate a behavior of the partial derivatives ∂µ/∂x, ∂µ/∂y and the
derivative with respect to the normal, ∂µ/∂ρ,

∂µ

∂t
= −4Ct

π
I(ρ), at t = x, y, ρ.

The integral I(ρ) =

∫ π/2

0

sin2 χ√
1− ρ2 sin2 χ

dχ, included in the last equation, is expressed

in terms of complete elliptic integrals of the first

K(ρ) =

2π∫
0

dχ√
1− ρ2 sin2 χ

.

and the second E(ρ) kind (13) as follows,

I(ρ) = −E(ρ)

ρ2
+

K(ρ)

ρ2
.

Referring to the series expansion of the function K(ρ) [42],

K(ρ) = ln
4√

1− ρ2
+
(1

2

)2(
ln

4√
1− ρ2

− 2

1 · 2

)
(1− ρ2) +

+
(1 · 3

2 · 4

)2(
ln

4√
1− ρ2

− 2

1 · 2
− 2

3 · 4

)
(1− ρ2)2 +

+
(1 · 3 · 5

2 · 4 · 6

)2(
ln

4√
1− ρ2

− 2

1 · 2
− 2

3 · 4
− 2

5 · 6

)
(1− ρ2)3 + ...,

(15)

we obtain that K(ρ) at ρ→ 1 has the logarithmic singularity, namely K(ρ) ∼ ln 2
√

2−
ln
√

1− ρ → +∞. Hence I(ρ) ∼ − ln(1 − ρ) → +∞ at ρ → 1, and thereby at ρ → 1
we have

∂µ

∂x
= − 4

π
xI(ρ) ∼ 4

π
x ln(1− ρ)→ ∓∞, x0,

∂µ

∂y
= − 4

π
yI(ρ) ∼ 4

π
y ln(1− ρ)→ −∞, y 6= 0,

∂µ

∂ρ
= − 4

π
ρI(ρ) ∼ 4

π
ρ ln(1− ρ)→ −∞.
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∂µ

∂t
= −4C

π
tI(ρ) ∼ 4C

π
t ln(1− ρ)→

{
−∞, t > 0,

+∞, t < 0,
t = x, y,

∂µ

∂ρ
= −4C

π
ρI(ρ) ∼ 4C

π
ρ ln(1− ρ)→ −∞.

(16)

The tendency to ±∞ of the partial derivatives ∂µ/∂x, ∂µ/∂y allows to use the operator
|d(·)| as the break indicator of a scalar field. Based on (16) we obtain that the operator
|d(·)| has the logarithmic singularity at the boundary, and

|dµ| =

√(∂µ
∂x

)2
+
(∂µ
∂y

)2
→∞

at ρ→ 1.

2.2 The indicators of breaks for vector fields

Starting from C-potential

ϕ(x, y) =

{ (
1− x2 − y2

)
, at x2 + y2 < 1

0 , at x2 + y2 ≥ 1

and its Radon transform
(
Rϕ
)
(ξ, s) = 4

(
1− s2

)3/2
/3, for |s| < 1, and

(
Rϕ
)
(ξ, s) = 0

for |s| ≥ 1, a partial derivative of Rϕ with respect to s,

∂(Rϕ)(ξ, s)

∂s
= −4s

√
1− s2

is calculated easily. The properties of ray transforms show that this derivative is both
the longitudinal ray transform of the solenoidal field v = (2y,−2x), and the transverse
ray transform of the field dϕ = u = (−2x,−2y).

For definiteness the longitudinal ray transform of the potential field v will be con-
sidered. As s = x cosα + y sinα then, assuming x = ρ cos γ, y = ρ sin γ, we obtain
s = ρ cos(α − γ),

√
1− s2 =

√
1− ρ2 cos2(α− γ). Thus the expressions for the com-

ponents of vector field µ, obtained as a result of application of the back-projection
operator, accept the form

µ1(x, y) =
2

π

∫ 2π

0

sinα
(
ρ cos(α− γ)

)√
1− ρ2 cos2(α− γ) dα,

µ2(x, y) = − 2

π

∫ 2π

0

cosα
(
ρ cos(α− γ)

)√
1− ρ2 cos2(α− γ) dα.

Changes of variables β = α − γ and χ = π/2− β after obvious converting lead to the
formulas

µ1(x, y) =
8y

π

∫ π/2

0

sin2 χ

√
1− ρ2 sin2 χdχ =

8y

π
I1(ρ)

µ2(x, y) = −8x

π

∫ π/2

0

sin2 χ

√
1− ρ2 sin2 χdχ = −8x

π
I1(ρ)

(17)
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The integral I1(ρ) at the right-hand sides of (17) is expressed

I1(ρ) =
1− ρ2

3ρ2
F (π/2, ρ)− 1− 2ρ2

3ρ2
E(π/2, ρ)

through the elliptic integrals of the first and the second kind,

F (δ, ρ) =

∫ δ

0

dα√
1− ρ2 sin2 α

, E(δ, ρ) =

∫ δ

0

√
1− ρ2 sin2 αdα,

respectively. As F (π/2, ρ) = K(ρ), E(π/2, ρ) = E(ρ), where K and E are complete
elliptic integrals of the first and the second kind, so

I1(ρ) =
1− ρ2

3ρ2
K(ρ)− 1− 2ρ2

3ρ2
E(ρ)

As E(ρ)→ 1, (1− ρ2)K(ρ)→ 0 at ρ→ 1, so we obtain I1(ρ)→ 1/3, and

µ1 → 8 sin γ/3π, µ2 → −8 cos γ/3π at ρ→ 1.

These conclusions are the consequences of series expansions (14), (15). Substituting ρ =
1 to the formulas (17) we obtain integrals which are expressed in terms of elementary
functions. Further simple calculations give the same expressions for µ1, µ2 that were
obtained with usage of the limit transition.

Below the value of

I2(ρ) =

∫ π/2

0

sin4 χdχ√
1− ρ2 sin2 χ

will be necessary. A corresponding indefinite integral is

I2(χ, ρ) =
sinχ cosχ

3ρ2

√
1− ρ2 sin2 χ+

2 + ρ2

3ρ4
F (χ, ρ)− 2(1 + ρ2)

3ρ4
E(χ, ρ).

The properties of trigonometric functions and elliptic integrals give

I2(ρ) =
2 + ρ2

3ρ4
K(ρ)− 2(1 + ρ2)

3ρ4
E(ρ). (18)

By means of representation (18) and series expansions for K(ρ) and E(ρ) we investigate
a behavior of the value I2 at ρ→ 1 below. At first, we note that the complete elliptic
integral of the 1-st kind K(ρ) ∼ ln(4/

√
1− ρ2) ∼ ln 2

√
2− ln

√
1− ρ→ +∞ at ρ < 1,

ρ→ 1. Hence by using (18) we obtain I2(ρ)→ +∞ at ρ < 1, ρ→ 1. It was established
above that I1(ρ)→ 1/3, so d I1(ρ)/dρ = −ρI2(ρ), and

∂µ1

∂x
= −8xy

π
I2(ρ),

∂µ1

∂y
=

8

π
I1(ρ)− 8y2

π
I2(ρ),

∂µ2

∂x
= − 8

π
I1(ρ) +

8x2

π
I2(ρ),

∂µ2

∂y
=

8xy

π
I2(ρ).

(19)
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It implies that at ρ < 1, ρ→ 1

∂µ1

∂x
→ −∞, x 6= 0, y 6= 0,

∂µ1

∂y
→ −∞, y 6= 0,

∂µ2

∂x
→ +∞, x 6= 0,

∂µ2

∂y
→ +∞, x 6= 0, y 6= 0.

(20)

Hence the behavior of partial derivatives at approaching a point inside the disk to the
circle is established.

A behavior of derivatives ∂µ1/∂ρ, ∂µ2/∂ρ of the vector field µ with respect to the
normal to the circle, ρ→ 1, will be considered now. Since

∂µ1

∂ρ
=

8 sin γ

π
I1(ρ)− 8ρ2 sin γ

π
I2(ρ),

∂µ2

∂ρ
= −8 cos γ

π
I1(ρ) +

8ρ2 cos γ

π
I2(ρ),

then ∂µ1/∂ρ → −∞, ∂µ2/∂ρ → +∞. At x 6= 0, y 6= 0 partial derivatives ∂µ1/∂x,
∂µ1/∂y tend to −∞, and ∂µ2/∂x, ∂µ2/∂y tend to +∞ at ρ < 1, ρ→ 1.

As indicators of breaks of a vector field may be chosen, in particular, such operators
as |dµ|, |δµ|, |δ⊥µ|. Really, based on (19), (20) we obtain

|∇µ| =
((∂µ1

∂x

)2
+
(∂µ1

∂y

)2
+
(∂µ2

∂x

)2
+
(∂µ2

∂y

)2)1/2

→∞,

at ρ < 1, ρ→ 1,

|δ⊥µ| =
∣∣∣∣∂µ2

∂x
− ∂µ1

∂y

∣∣∣∣→∞,
ρ < 1, ρ → 1. These operators have logarithmic singularities near the boundary due
to the behavior of partial derivatives.

The operator δ and corresponding the indicator of breaks |δµ| are interesting. Ex-
pressions (19) yield

δµ =
∂µ1

∂x
+
∂µ2

∂y
= −8xy

π
I2(ρ) +

8xy

π
I2(ρ) = 0, ρ < 1.

and so the field µ is solenoidal. Thus the operator δ “cancels” the field µ in the circle B.
Nevertheless numerical experiments show good quality of the visualization of breaks
of vector fields and breaks of their derivatives. Likewise the operator δ⊥ acts on the
image of back-projection operator acting on the transverse ray transform of a potential
vector field. It should be noted that

δ⊥µ ≡ ∂µ2

∂x
− ∂µ1

∂y
= −16

π
I1(ρ) +

8ρ2

π
I2(ρ).

2.3 A behavior of operators of inhomogeneity and breaks
indicators. Simulation

Test 2.1 demonstrates a behavior of the Vainberg operator and the operator of
“gradient module”. In the second test 2.2 an action of different operators of breaks
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indicator is demonstrated. They acts on the longitudinal ray transform of discontinuous
solenoidal vector field.

Test 2.1. Discontinuous function and function with discontinuous first
derivatives. The Vainberg operator does not distinguish between breaks of a function
and breaks of its first derivatives. This operator consists in the following sequence of
operations,

Rϕ→ ∂2

∂s2
(
Rϕ
)
→ R#(

∂2

∂s2
(Rϕ)) = g(x, y).

a) C−1&C0 b) BP operator c) Vainberg operator
Fig. 1.

The operator “gradient module” is applied to the back-projection operator and consists
in the following sequence of operations,

Rϕ→ R#(Rϕ)→ |∇(R#(Rf))| = g(x, y).

a) Vainberg operator b) Gradient module c) GM twice
Fig. 2.

The operator of double “gradient module”, starting with the last function g of the
previous sequence (gradient module), is looks like

g(x, y)→ ∇g → |∇g| = h(x, y).

Conclusions are obvious. The Vainberg operator does not distinguish between breaks
of the function and breaks of its first derivatives. From a mathematical point of view,
this operator approximates δ-function arising at the line of breaks after double dif-
ferentiation with respect to s. Operator “gradient module” acts more carefully. The
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figure shows that there is no singularities at the continuous function with breaks in
derivatives, but breaks of discontinuous function are visualized distinctly.

Test 2.2. Discontinuous solenoidal vector field. A vector field is constructed
based on the potential ϕ(x, y) = h − h

√
x2 + y2/R at x2 + y2 < R2 and ϕ(x, y) = 0

at x2 + y2 ≥ R2,

v = (v1, v2) =
( h
R

y√
x2 + y2

, − h
R

x√
x2 + y2

)
.

a) Potential of VF b) Solenoidal VF

c) Component 1 d) Component 2
Fig. 3.

The longitudinal ray transform of solenoidal vector field under consideration is

(Pv)(η, s) = − h
R
s ln

R +
√
R2 − s2

R−
√
R2 − s2

.

Figure 4 shows the results of action of different operators of breaks indicator. The
breaks indicator operators of a discontinuous solenoidal vector field is described by the
following sequences of simple operators.

Pv → P#
1tf (Pv) = (µ1, µ2)→ ∇µ = (νij)→ |ν(x, y)|.

Pv → P#
1tf (Pv) = (µ1, µ2)→ |div µ(x, y)|.

Pv → ∂

∂s
(Pv) = g(η, s)→ |P#

f

( ∂
∂s

(Pv)
)
(x, y)|.

Pv → ∂

∂s
(Pv) = g(η, s)→ |P#

2tf

( ∂
∂s

(Pv)
)
(x, y)|.
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a) |∇(µ)| b) |divµ|

c) P#
f (∂/∂s(Pv)) d) P#

2tf (∂/∂s(Pv))

Fig. 4.

As it is shown at the figure the operators |∇(µ)| and |div µ| allocate the isolated
singularity in the origin. But if at first we apply differentiation with respect to s, and
after that back-projection operator, this singular point disappears. The line of breaks
at all four pictures of the figure is visualized distinctly.

3 Algorithms for breaks reconstruction of a function
or its first derivatives

Initial data for the problem of breaks reconstruction of a function or its first deriva-
tives are discrete values of the Radon transform of the function. It should be remind
the breaks of the first type are considered only. Besides the Radon transform, the other
operators are intended for the problem of reconstruction of geometrical objects with
not empty singular support solving. The first step consists in visualization of a set of
breaks or singular support points.

3.1 A description of algorithms

A visualization of a set of singular support points of a function
Steps and discretization procedures of a visualization algorithm of a set of

singular support points of a function. The algorithm is based on the gradient module
operator and includes following elements:
– 1. Discretization of the Radon transform values (2) by s, α for a test function.
– 2. An approximate calculation of the integral (2) of a test function for fixed s, α.
– 3. An approximate calculation of values of the back-projection operator (BPO).
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– 4. An application of the operator |∇ · | to the values of BPO. The operator may be
applied repeatedly.
– 5. A visualization of obtained function.

Steps and discretization procedures of a visualization algorithm of a set of
singular support points of a function. The algorithm is based on the Vainberg module
operator and includes just the same elements as above except point 3, 4:
– 3. An application of the operator of double differentiation with respect to s to the
values of the Radon transform. The operator may be applied repeatedly.
– 4. An approximate calculation of values of BPO.

Let,s describe basic procedures.
The discretization of variables α, s. Specifying an integer L we form discrete

sequences

αk, k = 0, . . . , 4L− 1, α0 = 0, ∆α = π/(2L);

si, i = −L+ 1, . . . , L− 1, s0 = 0, ∆s = 1/L.

The values αk, si define a line Lξksi of the integration, ξk = (cosαk, sinαk) is the normal
vector of Lξksi . In the numerical tests a discrete grid of a size 256×128 for α, s is used.

An approximate calculation of the Radon transform values. For calculating
the integrals along straight lines we use the five-point quadrature Newton-Cotes formula
of the reserved type

t4∫
t0

F (t) dt ≈ ∆t

45

(
14F (t0) + 64F (t1) + 24F (t2) + 64F (t3) + 14F (t4)

)
. (21)

The values αk, si define a line Lξksi = {x ∈ R2 | ξ1kx1 + ξ2kx
2 = si} of the integration.

The vector (− sinαk, cosαk) is the direction vector of the line Lξksi . The integration
from a point (si cosαk +

√
1− s2i sinαk, si cosαk −

√
1− s2i sinαk) to a point (si cosαk

−
√

1− s2i sinαk, si cosαk +
√

1− s2i sinαk) is implemented. At each step of integra-
tion the condition of the ray to be output of the domain of integration is controlled.

An approximate calculation of the values of the back-projection operator
for the Radon transform and its derivatives g(α, s) = ∂2n(Rf)/∂s2n(α, s) are calculated
in the square [−4, 4]2. The discrete grid with a step size ∆x1 = ∆x2 = 1/64 for
calculating the BPO image is used. We obtain discrete sequences

x1l , l = 0, . . . , 512, x10 = −4;

x2m, m = 0, . . . , 512, x20 = −4.

Specifying an integer Nγ we form discrete sequences of angles γj = 2πj/Nγ, j =
0, ..., Nγ − 1, by which the numerical integration is performed. In our numerical tests
we use Nγ = 256 so that ∆γ = ∆α. For a point xlm = (x1l , x

2
m) and an angle γj we

obtain slmj = x1l cos γj + x2m sin γj.
If |slmj| 6 1, then the value (Rf)(γj, slmj) (its derivative g(γj, slmj)) is defined as

the linear interpolation by (Rf)(αi, sk) and (Rf)(αi, sk+1) (respectively, g(αi, sk) and
g(αi, sk+1)) with the properties αi = γj and s ∈ [sk, sk+1].

If |slmj| > 1, we suppose (Rf)(γj, slmj) = 0.
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The value of BPO at the point xlm is obtained by numerical integration of
(Rf)(γj, slmj) with respect to γi with usage of the formula (21).

An approximate calculation of the values of BPO for the ray transforms of tensor
fields and their derivatives are performed similarly.

An application of the operator |∇ · | to the values of BPO. Differentiation
with respect to x1, x2 is done by means of central difference scheme

h′t(ti) =
h(ti+1)− h(ti−1)

ti+1 − ti−1
.

An application of the operator of double differentiation with respect to
s is implemented with usage of the central difference scheme

g′′ss(si) =
g(si+1)− 2g(si) + g(si−1)

(si − si−1)2
.

A visualization algorithms of a set of points of a vector field sin-
gular support.

Steps and discretization procedures of a visualization algorithm of a set
of points of singular support of a vector field with usage of the operators of inner
differentiation and divergence includes the following elements:
– 1. Discretization of the longitudinal (7) or transverse (8) ray transform values by
s, α for a test vector field.
– 2. An approximate calculation of the integrals (7) or (8) of a test vector field for
fixed s, α.
– 3. An approximate calculation of values of the back-projection operator.
– 4. An application of the operators of inner differentiation and divergence to the
values of the back-projection operator.
– 5. A visualization of the obtained function.

Steps and discretization procedures of a visualization algorithm of a set of
points of singular support of a vector field with usage of the Vainberg operator includes
the same elements excepts the points 3 and 4:
– 3. An application of the operator of double differentiation with respect to s many
times as needed to the values of the ray transform.
– 4. An approximate calculation of values of the back-projection operator.

All steps and discretization procedures of the visualization algorithms for a set of
points of singular support of the vector field are similar to the scalar case.

3.2 An action of the operators of breaks indicator on the Radon
transform of a discontinuous function

We assume the following agreement. The values of all used below potentials and
corresponding vector fields vanish outside of a domain B, which is a circle of radius
R < 1. Therefore the formulas are given only for variables that lie inside of D. The
formulas for the Radon transform and the ray transforms are given for s, −R ≤ s ≤ R.
The transforms are equal to 0 for |s| > R. The results of numerical experiments are
represented below.
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Test 3.1. A dependence of quality of reconstruction of a function breaks
from noisy data. First test contains the results of reconstruction of the set of break
points of a piecewise constant function by its known Radon transform. The functions
is shown at Fig. 5 (a). The operator |∇( · )| is used.

a) b)

c) d) e)
Fig. 5.

The piecewise constant function (a) and visualizations of its breaks: exact data (b); data
with the noise level in 5% (c); 10% (d) and 20% (e).

A uniform distributed error with various levels is carried in the data. It can be con-
cluded that outlines of breaks are visualized, despite the very significant level of error
20%.

Test 3.2. An action of the Vainberg operator and the gradient module
operator (GMO) on the functions of varying degrees of smoothness.

The Vainberg operator acting on the Radon transform of function ϕ can be repre-
sented as a scheme (Rϕ)(ξ, s)→ g(ξ, s) := ∂2/∂s2(Rϕ)(ξ, s)→ ψ(x, y) := (R#g)(x, y).
It may be said that a single action of the Vainberg operator (in a sense smoothness) is
equivalent to a twice action of GMO.

An elementary phantom ϕ is a “λ-parabola” with an elliptical support,

ϕ(x, y) =

{
C(1− t2)λ , t ≤ 1,

0 , t > 1,

where

t2 =
((x− x0) cos β + (y − y0) sin β)2

a2
+

(−(x− x0) sin β + (y − y0) cos β)2

b2
,



Mathematical models and algorithms for reconstruction of singular support... 25

and the Radon transform, λ > 0 [43],

(Rϕ)(s, φ) =

√
πabCΓ(λ+ 1)

|ζ|Γ(λ+ 3/2)

(
1− (s− s0)2

ζ2

)λ+1/2

.

Here s0 = −x0 sinφ+y0 cosφ, ζ2 = a2 sin2(φ−β)+b2 cos2(φ−β). A complex phantom
is made up from the elementary phantoms. It is similar to the Shepp-Logan phantom
by the contours and is named as the “potential 2” (Pot2).

Figure 6 presents an action of the back-projection operator applied to the Radon
transform of the potential 2. The degree of smoothness of the potential is determined
by the parameter λ.

a) λ = 0.5 b) λ = 1 c) λ = 2

Fig. 6.
An application of BPO to the Radon transform of Pot2.

Figure 7 presents the results of application of the Vainberg operator to the Radon
transform.

a) λ = 0.5 b) λ = 1 c) λ = 2

Fig. 7.
An application of the Vainberg operator to the Radon transform.

Figure 8 presents the results of a single application of the gradient module operator to
the image of back-projection operator applied to the Radon transform of the potential
2 with different degree of smoothness.
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a) λ = 0.5 b) λ = 1 c) λ = 2

Fig. 8.
Results of a single application of GMO to BP.

Figure 9 presents the results of double application of the gradient module operator to
the image of back-projection operator applied to the Radon transform of the potential
2 with different degree of smoothness.

a) λ = 0.5 b) λ = 1 c) λ = 2

Fig. 9.
Results of a double application of GMO to BP.

Figures 10, 11 present “the parabolic Shepp-Logan phantom”, named as “the potential
3” (Pot3), with λ = 0.5, λ = 1, which is a modification of “the potential 2”. Figure 10
demonstrates results of a double application of the Vainberg operator to the image of
the Radon transform of the potential 3.

a) λ = 0.5 b) λ = 1

Fig. 10.
Double application of the Vainberg operator to the Radon transform of the Pot3.
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Figure 11 presents results of a double and a triple application of the gradient module
operator to the back-projection operator.

a) double GMO, λ = 0.5 b) double GMO, λ = 1

c) triple GMO, λ = 0.5 d) triple GMO, λ = 1

Fig. 11.
Results of double and triple application of the gradient module operator to the

back-projection operator.

Test 3.3. A dependence of a quality of reconstruction of function and its
first derivatives breaks from applied back-projection operators. The purpose
of the third test is a visualization of singular support of the discontinuous function
(Figure 12 a)

ϕ(x, y) =

{
0.2, if (x− 0.3)2 + y2 < 0.04,

0, otherwise,
(22)

and the continuous function with discontinuous first derivatives (Figure 13 a)

ϕ(x, y) =


0.1, if (x− 0.3)2 + y2 < 0.01,

0.2−
√

(x− 0.3)2 + y2, if 0.01 6 (x− 0.3)2 + y2 < 0.04,

0, otherwise.
(23)

We use the inner differentiation module operator as an operator of breaks indicator.
Procedure of visualization of a singular support performed by two ways: with usage
of the back-projection operator of the Radon transform (Figure 12 b and Figure 13
b); with usage of the back-projection operator of the longitudinal ray transform of the
symmetric 2-tensor field (Figure 12 c and Figure 13 c).
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a) ϕ b) |∇(R#(Rϕ))| c) |∇(P#
2tf (Rϕ))|

Fig. 12.
A function (22) (a); visualizations of its singular support by BP of the Radon transform (b);

BP of the longitudinal ray transform of the symmetric 2-tensor field (c).

a) ϕ b) |∇(R#(Rϕ))| c) |∇(P#
2tf (Rϕ))|

Fig. 13.
A function (23) (a); visualizations of its singular support by BP of the Radon transform (b);

BP-operator of the longitudinal ray transform of the symmetric 2-tensor field (c).

We conclude from the figures, it is better to use an operator |∇(R#(Rϕ))| for visua-
lization of a singular support of a discontinuous field. Whereas for a function with
discontinuous first derivatives an application of the operator |∇(P#

2tf (Rϕ))| leads to
the best results.

Test 3.4. A dependence of quality of reconstruction of a singular support
of a small inclusion from its smoothness. The purpose of the fourth test is a
visualization of singular support of the discontinuous scalar field with discontinuous
inclusion (Figure 14 a)

ϕ(x, y) =


1.2, if x2 + y2 < 0.25,

1, if 0.25 6 x2 + y2 < 1,

0, otherwise,
(24)

and the discontinuous scalar field with continuous inclusion (Figure 15 a)

ϕ(x, y) =


1.2, if x2 + y2 < 0.04,

4/3− 2/3
√
x2 + y2, if 0.04 6 x2 + y2 < 0.25,

1, if 0.25 6 x2 + y2 < 1,

0, otherwise.

(25)

We use the gradient module operator, which is applied to the back-projection operator
of the Radon transform, as an operator of breaks indicator. The breaks on the border
of the unit circle gives a big splash, therefore the visualizations of the singular support
are presented in a circle of radius 0.8.
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a) ϕ b) |∇(R#(Rϕ))|
Fig. 14.

The function (24) (a); visualizations of its singular support by BP-operator of the Radon
transform (b).

a) ϕ b) |∇(R#(Rϕ))|
Fig. 15.

The function (25) (a); visualizations of its singular support by BP-operator of the Radon
transform (b).

The figures show that it is not enough to use a single application of the gradient
module operator for visualization of a singular support of continuous inclusion (unlike
discontinuous inclusion).

3.3 An action of the indicators of breaks on the Radon trans-
form of a function with discontinuous derivatives

Test 3.5. A dependence of quality of reconstruction of derivatives breaks
from the indicators of derivatives breaks. The purpose of the fifth test is a
visualization of singular support of the continuous scalar field

ϕ(x, y) = h− h

R

√
x2 + y2, x2 + y2 < R2, (26)

(h > 0, R > 0 — parameters) with discontinuous first derivatives at the origin and
on the boundary, i.e. ∂D0 = ∂D ∪ {(0, 0)}. The initial data are values of the Radon
transform, which can be easily calculated,

(
Rϕ
)
(ξ, s) = h

√
R2 − s2 − hs2

2R
ln
R +
√
R2 − s2

R−
√
R2 − s2

. (27)

Procedure of visualization of a singular support performed in three ways. At first, we
use the the Vainberg operator (Fig. 16 c). Secondly, the operator |∇2(·)| (Fig. 16 d),
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and thirdly the operator div∇(·) (Fig. 16 e), applied to the back-projection operator
of the Radon transform of potential (27). Note that all three approaches give good
result of visualization of derivatives breaks on the boundary ∂D, while the singularity
at the origin are not determined by the Vainberg operator.

A reconstruction of a set of break points of a vector field can be carried out, in
particular, by the following ways. Two ways at the first phase deal with calculation of
the components µ1, µ2 using the formulas (9). Further (the first variant) Q1(x, y) =
∇µ1(x, y), Q2(x, y) = ∇µ2(x, y) and function Q(x, y) =

√
|Q1|2 + |Q2|2 is calculated.

In the second variant |divµ| is calculated.

a) b)

c) d) e)
Fig. 16.

Potential (26) (a); BP-operator of (27) (b); visualization of the derivatives breaks: by the
Vainberg operator (c); by the operator |∇2(·)| (d); by the operator div∇(·) (e).

Numerical experiments have shown good results of visualization of singular support
of functions and vector fields. The gradient module operator, in general, proved to
be more flexible instrument than the Vainberg operator. The last can not distinguish
between breaks of function and breaks of its first derivatives. Application of the double
differentiation (no matter by what operator) in some tests led to the appearance of the
δ-function on lines of breaks, thus to a stronger singularity. However, the implemen-
tation of the described approaches has allowed to determine, visually, and this type of
singularities.

4 A reconstruction of singular support of functions
and vector fields

Discrete values of the images of the Radon transform of functions and discrete
values of the images of the longitudinal and transverse ray transforms of vector fields
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are the initial data for the reconstruction of the singular support of these fields. All
other operators are the mathematical tools for solving the problem of reconstruction
of geometric objects with not empty singular support. The first stage of the problem
solving is a visualization of discontinuities or a singular support. In numerical tests a
discrete grid of a size 256×128 for α, s is used. The number of rays for calculation of the
back-projection operator is Nγ = 256. Figures of test fields and results of visualization
of singular supports are given in the domain [−1, 1]2.

4.1 A reconstruction of breaks of the second derivatives
of a function

Test 4.1. We consider the function with discontinuous second derivatives at the
boundary. We name it as “parabolic hyperboloid × paraboloid squared” (Pot6),

φ(x, y) =

{
xy
(
R2 − x2 − y2

)2
, x2 + y2 < R2

0, x2 + y2 ≥ R2
. (28)

This potential has the following Radon transform,

(Rϕ)(α, s) =

√
R2−s2∫

−
√
R2−s2

(s cosα− t sinα) (s sinα + t cosα)
(
R2 − s2 − t2

)2
dt

= − 16

105

(√
R2 − s2

)5 (
R2 − 8s2

)
cosα sinα.

(29)

The partial derivative of the Radon transform with respect to s is equal to

∂(Rφ)(α, s)

∂s
=

16

15
s
(√

R2 − s2
)3 (

3R2 − 8s2
)

cosα sinα (30)

The second partial derivative of the Radon transform (29) with respect to s is equal to

∂2(Rφ)(α, s)

∂s2
=

16

5

√
R2 − s2

(
R4 − 12s2R2 + 16s4

)
cosα sinα

For visualization of breaks of the second derivatives of the function one has to use
a triple differentiation which can be carried out either before or after application of
the back-projection operator. Therefore many operators of breaks indicator arise for
solving this problem. Operators of differentiation of the Radon transform with respect
to s and α can be used, as well as all differential operators of vector analysis. They
can be applied after the application of the back-projection operators. For example we
may use the operators of gradient, curl and divergence.
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a) b) c)

Fig. 17.
The function Pot6 (a); application of the back-projection operator (b); application of the

Vainberg operator (c).

The figure shows that it is not enough to use a double differentiation (the Vainberg
operator) for visualization of a discontinuities of the second derivative of the scalar
field.

a) b) c)

d) e) f)

Fig. 18.
The back-projection operator for the Pot6 (a); Vainberg operator (b); application of actions:
the Vainberg operator, the operator |∇(·)| to the Radon transform of Pot6 (c); the operator
|∇3(·)| (d); the operators: ∇, div and |∇(·)| to the back-projection operator (e); the

operator |div(∇(|rot(·)|))| (f).

We use four operators of breaks indicator. The figures show that it is not possible to
single out any one indicator having a distinct advantage.
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4.2 An action of the operators of breaks indicator to the ray
transform of a vector field

Test 4.2. A dependence of quality of reconstruction of a vector field from the noise
level. The solenoidal vector field is generated by the potential (in polar coordinates)

ϕ(x, y) =


r2, if |x| ≤ 1/4 and |y| ≤ 1/4

4π − φ, if r ≤ φ and |x| > 1/4 and |y| > 1/4

2π − φ, if φ < r ≤ φ+ 2π and |x| > 1/4 and |y| > 1/4

0, otherwise

and is defined by the relations v1 = ∂ϕ/∂y, v2 = −∂ϕ/∂x. Figure 19 presents the
potential and components of this field. Figure 20 demonstrates visualizations of dis-
continuities of the solenoidal vector field. An evenly distributed error with various
levels is added to the initial data, i.e. in the longitudinal ray transform. We use the
following noise levels: 0% (without noise), 5%, 10% and 20%. Figure 20 presents the
result of application of the gradient module operator, i. e. ϕ → ∇ϕ → |∇ϕ|, to an
image of the back-projection operator, i. e. to a vector field (µ1, µ2).

a) Potential VF b) Component 1 VF c) Component 2 VF

Fig. 19.
The potential and components of the solenoidal vector field.

a) noise level 0% b) noise level 5% c) noise level 10% d) noise level 20%

Fig. 20.
Visualizations of breaks of the solenoidal VF. A uniformly distributed error with various

levels is added in the initial data.

The figure 20 show that even a very large noise level in 20% allows us to identify the
structure of the set of break points of the vector field.
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4.3 An action of the operators of breaks indicator to the ray
transform of a vector field with nonempty singular support

Test 4.3. Reconstruction of a set of break points of vector fields. Discontinuous
solenoidal and potential vector fields are generated by the potential ϕ(x, y) = h −
h
√
x2 + y2/R if x2 + y2 < R2 and ϕ(x, y) = 0 if x2 + y2 ≥ R2. We used this potential

above in Test 2.2.
The solenoidal vector field is defined by the formula

v = (v1, v2) =


( h
R

y√
x2 + y2

,− h
R

x√
x2 + y2

)
, x2 + y2 < R2

(0, 0), x2 + y2 ≥ R2

, (31)

and the potential vector field is defined by the formula

u = (u1, u2) =


(
− h

R

x√
x2 + y2

,− h
R

y√
x2 + y2

)
, x2 + y2 < R2

(0, 0), x2 + y2 ≥ R2

. (32)

The transverse ray transform of the potential vector field (32) is calculated as follows

(Rv)(θ, s) = − h
R
s ln

R +
√
R2 − s2

R−
√
R2 − s2

.

a) b) c)

Fig. 21.
The solenoidal VF (31). The potential φ of vector field (a); 1-st component of the field (b);

2-nd component of the field (c).

a) b) c)

Fig. 22.
The potential VF (32). The potential of VF 2 (a); 1-st component of the field (b); 2-nd

component of the field (c).
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a) b)
Fig. 23.

Solenoidal VF (31) (a); potential VF (32) (b).

a) b)
Fig. 24.

The longitudinal (transverse) ray transform of the solenoidal (potential) VF (31) ( (32) ) (a);
its derivative with respect to s (b).

a) b) c)
Fig. 25.

Application of the back-projection operators: to the Radon transform of the potential (a);
to the transverse ray transform of the potential VF (32), 1-st component λ1 (b); 2-nd

component λ2 (c).

We recall that the components λ1, λ2 of the potential field (10) are produced by the
action of the back-projection operator to the transverse ray transform of the field (32)
by the formula (11). Besides that the longitudinal ray transform of solenoidal vector
field and the transverse ray transform of potential vector field coincide if they are
generated by the same potential. Therefore, the images on the Figure 25 (b) and (c)
are at the same time also the result of application of the back-projection operator to
the longitudinal ray transform of the solenoidal vector field (31).



36 Derevtsov E.Yu., Maltseva S.V., Svetov I.E.

a) b)

c) d)
Fig. 26.

Reconstruction of breaks of VF (32). Application of the operator |∇⊥(·)| to the vector field
λ (a); application of the operator div⊥ to λ (b); application of the back-projection operator
(with respect to the function) after application of differentiation with respect to s to the ray
transform of field (32) (c); application of the back-projection operator (with respect to the
2-tensor field) after application of differentiation with respect to s to the ray transform of

field (32) (d).

A procedure of visualization of breaks of a field can be performed, in particular, by
the following four ways. In the first two at the first stage we calculate the com-
ponents λ1, λ2 of a vector field obtained by application of the back-projection op-
erator to the transverse ray transform of original field. Further (the first variant)
we calculate Q1(x, y) = ∇⊥λ1(x, y), Q2(x, y) = ∇⊥λ2(x, y), and then the function
Q(x, y) =

√
|Q1|2 + |Q2|2. Second variant consists in calculation of |div⊥µ|. The third

and fourth ways contain the first stage in differentiation with respect to s. Further the
image of the back-projection operator with respect to the function (the third variant),
and the image of the back-projection operator with respect to the 2-tensor field (the
fourth variant) are calculated.

In the test the initial data for the solution of the problem are the transverse ray
transform of the potential vector field with the potential, which was used in test 2.2
for a construction of the solenoidal vector field. Comparison of Figures 4 and 26 allows
us to conclude that results of visualizations of the set of break points of two fields are
the same, as would be expected.

Test 4.4. Reconstruction of breaks of first derivatives of a vector field. A vector
field 6 is generated by the potential 6 (Pot6) with discontinuous 1-st derivatives on the
boundary. The potential

φ(x, y) =

{
xy
(
R2 − x2 − y2

)2
, x2 + y2 < R2

0, x2 + y2 ≥ R2
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generates the solenoidal vector field

v = (v1, v2) =


(R2 − x2 − y2)

(
− x(R2 − x2 − 5y2) ,

y(R2 − 5x2 − y2)
)
, x2 + y2 < R2

(0, 0), x2 + y2 ≥ R2

,

and the potential vector field

u = (u1, u2) =


(R2 − x2 − y2)

(
y(R2 − 5x2 − y2) ,

x(R2 − x2 − 5y2)
)
, x2 + y2 < R2

(0, 0), x2 + y2 ≥ R2

.

The potential of the fields is continuous function in R2, so the longitudinal (transverse)
ray transform of the solenoidal (potential) vector field 6 coincides with the first partial
derivative with respect to s of the Radon transform (30) of the potential (28),

(Rv)(θ, s) =
16

15
s
(
3R2 − 8s2

) (
R2 − s2

)3/2
θ1θ2

a) b) c)

Fig. 27.
The solenoidal VF 6. The potential φ of VF 6 (a); 1-st component −∂φ/∂y of the field (b);

2-nd component ∂φ/∂x of the field (c).

a) b) c)

Fig. 28.
The potential VF generated by the potential 6. The potential φ of VF 6 (a); 1-st component

∂φ/∂x of the field (b); 2-nd component ∂φ/∂y of the field (c).



38 Derevtsov E.Yu., Maltseva S.V., Svetov I.E.

a) b)
Fig. 29.

The solenoidal VF (a) and the potential VF (b) generated by the Pot. 6.

a) b) c)
Fig. 30.

Application of the back-projection operators: to the Radon transform of potential 6 (a); to
the longitudinal ray transform of solenoidal VF 6, 1-st component µ1 (b); 2-nd component

µ2 (c).

Figures 31–33 demonstrate different reconstructions of the set of break points of the first
derivatives of solenoidal vector field generated by the potential 6. At the first figure
the operator of the angular momentum of the 1-st order, coinciding with the back-
projection operator with respect to vector field, is applied to the known longitudinal
ray transform. The result is a vector field (µ1, µ2). Then we apply the gradient operator
to (µ1, µ2) two times and calculate module of 3-tensor field, Fig. 31 (a); we apply the
gradient operator, the divergence operator, and calculate the module of resulting vector
field, Fig. 31 (b); finally, we apply the divergence operator, the gradient operator, and
calculate module of resulting vector field, Fig. 31 (c).

a) b) c)
Fig. 31.

Reconstruction of breaks of the first derivatives of VF 6. After application of the
back-projection operator we calculate the module of results of: the double gradient operator
(a); the gradient and divergence operators (b); the divergence and gradient operators (c).
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Figure 32 represents the results obtained with usage of other procedures. Namely,
primarily the operator of differentiation over s is applied to the ray transform. The
result is the longitudinal ray transform of symmetric solenoidal 2-tensor field generated
by the potential 6. The resulting function is even, as the Radon transform of the
potential 6. Therefore, it is possible to apply the operators of angular moments of even
orders to this function (the operators of angular moments of odd orders give identical
0, as already mentioned). Figure 32 (a) demonstrates the result of application of
sequence of operators: the differentiation operator with respect to s, the operator of
angular moments of the zero order (as to the Radon transform of the scalar field), the
gradient operator, the module of resulting vector field. Figures 32 (b, c) present results
of application of the operator of angular moments of the second order, coinciding with
the back-projection operator of the longitudinal ray transform of symmetric solenoidal
2-tensor field, to the result of application of the differentiation operator with respect
to s. Further we apply the divergence operator and calculate module of the resulting
vector field (Fig. 32 (b)); we apply the gradient operator and calculate module of the
resulting 3-tensor field (Fig. 32 (c)).

a) b) c)
Fig. 32.

Reconstruction of breaks of the first derivatives of VF 6. Application of operators: the
differentiation operator with respect to s, the back-projection operator with respect to
scalar field, the gradient operator, the module of resulting VF (а); the differentiation

operator with respect to s, the back-projection operator with respect to symmetric 2-tensor
field (b, c), then the calculate of divergence and its module (b); gradient and its module(c).

a) b)
Fig. 33.

Reconstruction of breaks of the first derivatives of VF 6. After application of double
differentiation operator with respect to s to the ray transform we apply the back-projection

operator with respect to VF and calculate module of the result (a); we apply the back
projection operator with respect to symmetric 3-tensor field and calculate module of the

result (b).



40 Derevtsov E.Yu., Maltseva S.V., Svetov I.E.

Figure 33 presents results of application (in the first stage) of the double differenti-
ation with respect to s to the ray transform. The result is the longitudinal ray transform
of symmetric solenoidal 3-tensor field generated by the potential 6. The resulting
function is odd, as and the longitudinal ray transform of solenoidal vector field 6.
Therefore it is possible to apply the operators of angular moments of odd orders to this
function (in this case the operators of angular moments of even orders give identical 0 as
a result). Figure 33 (a) demonstrates the result of application of the following operators:
the double differentiation with respect to s; the operators of angular moments of the
first order; the module of resulting vector field. Figure 33 (b) presents the result of
application of the following operators: the double differentiation with respect to s;
the operators of angular moments of the third order, which coincide with the back-
projection operator of the longitudinal ray transform of symmetric solenoidal 3-tensor
field; the module of resulting 3-tensor field.

4 Conclusion

Stated above settings and features of the problems of scalar, vector and tensor
tomography at applications to the geometrical objects with breaks and geometrical ob-
jects with non-empty singular support lead to certain outlines and conclusions. Prin-
ciples of formations for the procedures of initial data obtaining are based on quite
different physical effects. Often they are very differ from the lying at the base of trans-
mission tomography the phenomenon of attenuation of a signal intensity at passage
throw the continuous medium. We recall that at a base of measuring in the most
known problems of vector and tensor tomography lay very different physical concepts.
They are difference between flight-of-times of direct and inverse signals in investiga-
tions of liquid and gas currents, the Doppler effect, schlieren-effect, a phenomenon of
electromagnetic and elastic waves polarization, etc.

The questions arise naturally weather the method and algorithms developed for the
problems of computer (scalar) tomography can be applied for the problems of vector
and tensor tomography? Especially since we investigate the objects with discontinuous
properties? Either they need in constructions of new mathematical tools which differs
very much from developed in framework of “tomography of functions”? Do they need
in special mathematics, methods and algorithms for every problem of vector or tensor
tomography based on different physical effects? Just now we may answer the first two
questions positively, but for the other questions the answers are negative at general.
The settings of 2D-tomography problems of vector and tensor fields confirm these
answers obviously. The variety of physical phenomena lying at the measurements of
passed through the objects physical fields in corresponding mathematical models are
leveling, but the mathematical models of data registrations are reduced to few types of
ray transforms. Besides, very different physical effects can be led to the same type of
ray transform. Raspingly speaking the problem of reconstruction of a tensor field (and
with non-empty singular support) by its known ray transforms can be reduced to the
problem of reconstruction of its components considered as functions by their Radon
transforms. Hence the vast majority of the approaches and algorithms developed for
the problems of function reconstruction can be applied and to the problems of vector
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and tensor tomography, if we restrict ourselves by investigations of the media without
refraction.

In the article necessary denotations, definitions, primary information on vector
and tensor fields as well as on main tomographic operators, such as the Radon and
ray transforms, the operator of back-projection and angular moment, are presented.
We formulate certain properties of the operators and pay attention to the inversion
formulaes. In particular we present the inversion formulaes giving the potentials of
vector fields.

A main goal of the article consists in confirmation and description of generalization
of the problem of function breaks reconstruction by the Radon transform. We suggest
to reconstruct the singular support of scalar, vector and tensor fields by their known
Radon or ray transforms. We describe the methods of the operators of indicators
of inhomogeneity and breaks construction with usage of the differential operators of
tensor analysis, the back-projection and angular moment operators. The differential
operators d, d⊥, δ, δ⊥ are applied widely for mathematical modeling and numerical
simulations.

In the article we summarize new approaches, methods and algorithms for the prob-
lems of breaks of discontinuous functions and vector fields solving, as well as for the
problems of a singular support of tensor fields reconstruction. Tomographic informa-
tion such as the values of the Radon transform and the longitudinal and transverse ray
transforms are exploited as initial data for the problems. A number of numerical tests
are provided, and their results are demonstrated. The results are satisfactory and show
that our approaches and algorithms constructed on a base of proposed operators of in-
dicators of breaks of functions and vector fields are working good with the numerous
test examples.
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