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Abstract The use of reflectance spectroscopy is a current area of study for the non-invasive
evaluation of complex materials such as ceramic matrix composites. In order to model the
reflectance, one must specify a model for the complex permittivity. In this work we compare
two methods for modeling the complex permittivity of a heterogenous material. In one ap-
proach, we impose a probability distribution on a subset of the dielectric parameters. This
approach leads to an infinite dimensional optimization problem over the space of probability
measures. We approximate this space with a finite dimensional space by using either a Dirac
approximation method or a linear spline approximation method. The second approach is to
assume a number of oscillators in the permittivity model, and then use a convolution with
a normal distribution. We compare both of these approaches on simulated data sets as well
as data obtained from inorganic glasses. Each of these methods are able to fit the data well,
yet the ease in interpreting the estimation results of imposing a probability distribution on
parameters, as well as the tight mathematical results [2, 7] guaranteeing convergence under
the Prohorov metric, lead us to favor the first approach.
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1 Introduction

There is a current interest in the integration of ceramic matrix composites (CMCs) for
both static and rotating components in high temperature turbine engines, specifically
in high-performance aircraft engines and other gas turbine engines [1, 19]. Over the
course of a CMCs lifetime, oxidation occurs which can compromise the integrity of the
desired material properties. Collaborators at Wright-Patterson Air Force Base have
hypothesized that as the CMC under study (a ceramic matrix with a silicon carbide
fiber) is exposed to high temperatures, components of the material will transition from
an amorphous to crystalline state. Thus, there is a need for noninvasive techniques
which can quantify the degradation, and possibly also the level of oxidation. Fourier
Transform Infrared (FTIR) spectroscopy has been investigated as one possible non
destructive evaluation tool with the potential to quantify the oxidation behavior [20,
16, 18, 10]. Due to the fact that CMCs are optically dense, we will consider the
reflectance (rather than transmission or absorption) spectroscopy.

Our goal is to develop a technique for modeling the reflectance, obtained using
an FTIR spectrometer, which can be used to quantify the levels of degradation. In
modeling reflectance, it is customary to assume a specific combination of polarization
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models with a predetermined number of dielectric parameters. However, due to the
highly heterogenous nature of CMCs, the number of dielectric mechanisms are un-
known. In a case where the material under study is inorganic glass, a convolution of
the Lorentz and Gaussian functions (a linear combination of normal distributions is
imposed on the resonance frequency in the Lorentz model) was proposed by Efimov, et
al., as early as in 1985 (e.g., see [12, 13]) (we will refer to this as the Efimov approach).
Another possible approach to deal with this difficulty, which was investigated in [4, 5],
is to impose an unknown probability distribution on the dielectric parameters. In that
work, a distribution was imposed on the resonance wavenumber and we continue that
convention in our current investigation. There is a solid theoretical foundation for
the non-parametric estimation of a probability distribution [17, 2, 3, 7, 6] under the
Prohorov Metric Framework (PMF). The estimation procedure involves approximat-
ing the space of admissible probability measures by a finite dimensional space using,
for example, either a Dirac approximation method or a linear spline approximation
method.

In this work we compare the two available approximation schemes under the PMF,
Dirac masses and piecewise linear splines, to establish the accuracy and reliability
for the estimation of the distribution of resonance wavenumbers. Additionally, we
also carryout the Efimov approach of imposing a normal distribution of the resonance
wavenumbers and compare these results with those obtained using the PMF. In Section
2, we give the permittivity models which are embedded in the model for the reflection
coefficient, and establish the foundation for the two approximation schemes under the
PMF. In Section 3 we give the results obtained using both synthetic data sets and
experimental data sets obtained from various inorganic glasses. Finally, in Section 5
we conclude the paper with summary remarks and plans for future work.

2 The model for the complex permittivity and the
reflection coefficient

The Lorentz model is derived by considering the polarization which results from the dis-
placement of electrons from equilibrium under the effect of an applied electromagnetic
field. The Lorentz model for the complex relative permittivity with a single-resonance
is given by

ε̂r(ω) = ε∞ −
ω2
p

ω2 − iω/τf − ω2
0

. (2.1)

In the above equation, ε∞ denotes the relative permittivity of the medium at infi-
nite frequency, τf is the relaxation time, and ωp = ω0

√
εs − ε∞ is called the plasma

frequency of the medium, where ω0 is the resonance frequency, and εs is the relative
permittivity of the medium at zero frequency, also known as the “static" dielectric
constant.

In practice it is typical for the data to be collected as a function of k, the wavenum-
ber, rather than frequency ω. Using the relationship that k = ω/(2πc), where c is the
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speed of light, we obtain the relative permittivity as a function of wavenumber

ε̂r(k) = ε∞ −
k2
p

k2 − ik/τk − k2
0

. (2.2)

In the above equation kp = k0

√
εs − ε∞, k0 = ω0/(2πc), and τk = 2πcτf . We will refer

to k0 as the resonance wavenumber and we will omit the subscript on the relaxation
time τk when it is clear that we are referring to the relaxation time for the permittivity
in terms of wavenumber.

According to quantum mechanical dispersion theory, and allowing for a material to
contain multiple oscillators, the more general model for the permittivity can be given
by

ε̂r(k) = ε∞ −
J∑
j=1

Sj
k2 − ik/τj − k2

0j

, (2.3)

where Sj is understood to be the intensity of the jth oscillator. The intensities Sj are
sometimes replaced by the contributions of the oscillators, ∆ε0jk

2
0j

= Sj, where
J∑
j=1

∆ε0j = εs − ε∞. (2.4)

2.1 Efimov model for permittivity

In [11, 14], Efimov describes an observed band broadening in the spectra of glasses,
which he contributes to the random distribution of particular realizations of micro-
scopic structures. To handle this band broadening, Efimov chooses to approximate the
broadening by using a Gaussian probability density function. This leads to a model
for the relative permittivity given by

ε̂r(k) = ε∞ −
J∑
j=1

Sj√
2πσj

∫ ∞
−∞

exp
(
−(x− k0j)

2/2σ2
j

)
k2 − ik/τj − x2

dx, (2.5)

where J is the number of oscillators. We note that Efimov has made the tacit assump-
tion to consider the intensities Sj as a “free" parameter. By this we mean, that had the
relationship Sj = ∆ε0jk

2
0j

been enforced, then there would be a x2 term multiplying
the exponential function in the integration.

Efimov notes that the band broadening could be better approximated by a truncated
Gaussian in order to ensure that the wavenumber ranges remain non-negative. We make
this modification which results in what we will refer to as the modified Efimov relative
permittivity model, given by

ε̂r(k; θ) = ε∞ −
J∑
j=1

Sj
cj

∫ ∞
0

exp
(
−(x− k0j)

2/2σ2
j

)
k2 − ik/τj − x2

dx, (2.6)

where
cj =

∫ ∞
0

exp
(
−(x− k0j)

2/2σ2
j

)
dx. (2.7)

In the above equation θ = (ε∞, {Sj, τj, k0j , σj}Jj=1)T ∈ Θ ⊂ R4J+1 with Θ assumed to
be compact.



Method comparison for estimation of distributed parameters... 7

2.2 Prohorov metric framework model for permittivity

An alternate method which can be used to account for multiple dielectric mechanisms
present in a material, is to impose a probability distribution on the dielectric parame-
ters, or a subset of the dielectric parameters. Here, we take this approach and then will
make use of the PMF to non-parametrically estimate the distribution(s). In this work
we only consider the case where a distribution is placed on the resonance wavenumbers
(distributions could also be put on the relaxation constants τ –see [4] .

To allow for a distribution G of resonance wavenumbers over an admissible set
K ⊂ R, we generalize the relative permittivity for the Lorentz model (2.2) to be

ε̂r(k;G, θ) = ε∞ −
∫
K

k2
p

k2 − ik/τ − k2
0

dG(k0), (2.8)

where G ∈ P(K), the set of admissible probability measures on K. In the case of
assuming a distribution of resonance wavenumbers we also have the constant parameter
vector θ = (εs, ε∞, τ)T ∈ Θ with Θ ⊂ R3 assumed to be compact.

We remark the the Efimov model is not a subcase of the PMF models.

2.3 Reflection coefficient

We now turn our attention to obtaining a model for the reflectivity. For simplicity,
we assume that a monochromatic uniform wave of wavenumber k is incident on a
plane interface between free space and a dielectric medium. We will deal with data
which is obtained either at an incident angle of φ = 45◦ or 0◦. Both situations can
be accurately described by assuming that the reflectance is composed of the parallel
and perpendicular polarizations in equal weights. Thus we obtain the equation for the
reflectivity

R(k;G, θ) =
1

2

(
|r⊥(k;G, θ)|2 + |r‖(k;G, θ)|2

)
, (2.9)

where

r⊥(k;G, θ) =
cosφ−

√
ε̂r(k;G, θ)− sinφ

cosφ+
√
ε̂r(k;G, θ)− sinφ

, (2.10)

and

r‖(k;G, θ) =

√
1− sin2 φ/ε̂r(k;G, θ)−

√
ε̂r(k;G, θ) cosφ√

1− sin2 φ/ε̂r(k;G, θ) +
√
ε̂r(k;G, θ) cosφ

. (2.11)

Notice that if φ = 0◦, then the equation for the reflectivity reduces to R(k;G, θ) =
|r⊥(k;G, θ)|2. A full derivation of the reflection coefficient can be found in many
electromagnetic treatments (e.g., see [9, Section 9.3]).

At this point we remark that when using the modified Efimov model for the complex
permittivity, the distributionG is absent. In order to avoid cumbersome notation, when
the modified Efimov model is used, we will ignore the input G mathematically, but not
drop it notationally.



8 H.T. Banks, Jared Catenacci, Shuhua Hu

2.4 Statistical model

Our goal is to estimate both the unknown probability measure G as well as the addi-
tional model parameters when using the PMF approach. Of course, when using the
Efimov model we need only estimate the relevant model parameters. We consider a
statistical model of the form

Yj = R(kj;G0, θ0) + Vj, j = 0, 1, 2, ..., n. (2.12)

In the above equation Yj is a random variable which is composed of the reflectance
with G0 the “true" probability measure and θ0 the “true" parameters at a sampling
wavenumber kj, and the measurement error Vj. For simplicity, we consider that the
errors Vj are independent and identically distributed with mean 0 and constant vari-
ance.

2.5 Inverse problem

With the assumptions we have made for the measurement errors in the statistical
model, the estimates Ĝ of G and θ̂ of θ can be obtained through an ordinary least
squares formulation

(Ĝ, θ̂) = arg min
(G,θ)∈(P(K)×Θ)

J(G, θ). (2.13)

In the above equation, the cost functional J is defined as

J(G, θ) =
n∑
j=0

(R(kj;G, θ)− yj)2 (2.14)

and yj is a realization of Yj, j = 0, 1, ..., n in (2.12). That is,

yj = R(k;G0, θ0) + νj, j = 0, 1, 2, ..., n. (2.15)

We note that (2.13) is an infinite-dimensional optimization problem in the case of
using the PMF. Thus, we need to approximate the infinite dimensional space P(K)
with a finite dimensional space PN(K) in order to have a computationally tractable
finite-dimensional optimization problem

(Ĝ, θ̂) = arg min
(G,θ)∈(PN (K)×Θ)

J(G, θ). (2.16)

We will consider two finite-dimensional spaces, PND (K) and PNS (K), to approximate
P(K). The space PND involves the use of Dirac measures, and the space PNS involves
the use of piecewise linear splines. We define these two spaces as

PND (K) =

{
G ∈ P(K)

∣∣∣∣∣ G =
N∑
m=1

αm∆xm ,where αm ≥ 0 and
N∑
m=1

αm = 1

}
(2.17)

and

PNS (K) =

{
G ∈ P(K)

∣∣∣∣∣ G′ =
N∑
m=1

αmlm(k0),where αm ≥ 0 and
N∑
m=1

αm

∫
Km

lm(ξ)dξ = 1

}
(2.18)
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where ∆xm is a Dirac measure with atom at xm, and lm is the mth linear spline element
with support Km. With either of these spaces we have reduced the infinite-dimensional
problem to a finite-dimensional problem in which we only need to estimate θ and the
weights α = {αm}Nm=1. Following the work in [4] we will estimate the Dirac atom
locations x = {xm}Nm=1 as well. Hence, when using the Delta approximation method
we have the minimization problem

(α̂, x̂, θ̂) = arg min
(α,x,θ)∈(RN

D×KN×Θ)

J

(
N∑
m=1

αm∆xm , θ

)
, (2.19)

where

RN
D =

{
α = (α1, α2, . . . , αN)T

∣∣∣∣∣ αm ≥ 0, and
N∑
m=1

αm = 1

}
,

KN =
{
x = (x1, x2, . . . , xN)T

∣∣ xm ∈ K,m = 1, 2, . . . , N
}
.

Using the spline method we have the minimization problem

(α̂, θ̂) = arg min
(α,θ)∈(RN

S ×Θ)

J(G, θ), G′ =
N∑
m=1

αmlm(k0) (2.20)

where

RN
S =

{
α = (α1, α2, . . . , αN)T

∣∣∣∣∣ αm ≥ 0, and
N∑
m=1

αm

∫
Km

lm(ξ)dξ = 1

}
.

When using the modified Efimov model, we simply have the standard minimization
problem

θ̂ = arg min
θ∈Θ

J(θ), (2.21)

where Θ ⊂ R4J+1 is compact.

3 Results

The results section is laid out as follows. First we investigate the differences between
the Dirac and spline approximation methods and the modified Efimov approach using
simulated data sets. We consider two simulated data sets, the first using a “true”
distribution G0 which is discrete, and the second distribution being continuous. Next
we compare the methods using reflectance data obtained from three different inorganic
glasses.

For the modified Efimov model we must choose the number of oscillators J which
describe the interrogated material. This is done by starting with a low value of oscilla-
tors and then increasing J until the model fit gives a reasonable approximation to the
data.
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3.1 Simulated data

The simulated data was generated by evaluating (2.15) at k = 600 + j∆k, where
∆k = 0.8 and j = 0, 1, 2, ..., n = 1000. The errors, νj, were chosen as a realization of a
normally distributed random variable with mean 0 and standard deviation σ0 = 0.001.
The number of interrogating wavenumbers which we use here is similar to sampling
capabilities of a modern FTIR spectrometer.

As noted above, for the true distribution G0, we consider two cases. In the first
case we take G0 to be a discrete distribution, which is depicted as the true distribution
(along with a number of graphs for the results from optimized PMF based fits-to-data)
in Figure 2 below. In the second case we take G0 to be a continuous distribution. For
this we chose to take G0 as a truncated bivariate normal distribution which can be
seen in Figure 4 (again along with a number optimized fits-to-data). For both cases we
used the scalar parameters θ0 = (εs0 , εs0 , τ0) = (1.6, 1.32, 0.017) and the incident angle
was set to φ = 45◦.

3.1.1 Discrete distribution

The “true" discrete distribution G0 used to simulate the data has 30 Dirac measures.
There are two regions, between 650 and 1100 cm−1, and between 1100 and 1400 cm−1,
in which the jump discontinuities present in the distribution produce relatively small
increases. At k0 = 1100 cm−1 there is a relatively large jump of 0.34. It is reasonable
assumption to expect a distribution of similar characteristics to describe a CMC which
is in a crystalline state.

Figure 1: The model fits to the simulated data generated with a discrete distribution.
The model fit using the Dirac approximation scheme is labeled as D45 and the spline
approximation schemes as S45, where 45 is the number of nodes N , and the model fit
using the modified Efimov method is labeled as E6 where J = 6 oscillators were used.

In Figure 1 we give the model fit for both PMF approximation schemes using
N = 45 as well as for the modified Efimov approach with J = 6. We see that both
PMF methods obtain an excellent model fit, and similar fits were obtained for other
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Figure 2: The estimated distributions to the simulated data using a discrete distribu-
tion using the Dirac approximation method with N = 15, 25, 35 and 45 nodes (left)
and using the spline approximation method with N = 25, 35, 45 and 55 nodes (right).

values of N . The model using the modified Efimov approach fits the data well except
for wavenumbers k > 1350 cm−1. We present the estimated distributions using the
spline and Dirac methods in Figure 2 and the estimated scalar parameters can be
found in Table 1.

We see an interesting feature as N is increased using the Dirac approximation.
With a low number of nodes, specifically for N = 15 and 25, the estimation results
match the true parameters and distribution very well. However, for N greater than
25, the estimation results begin to deviate from the true values. This is most likely
due to an over parameterization of the problem. This increased freedom allows for the
approximate model to begin to fit the noise present in the data.

Delta Approximation Spline Approximation Efimov Method
N εs ε∞ τ N εs ε∞ τ N εs ε∞
15 1.6187 1.3299 0.0142 8 1.9850 1.6000
25 1.6055 1.3252 0.0164 25 1.7243 1.4931 0.0513
35 1.5707 1.2869 0.0192 35 1.7043 1.4496 0.0280
45 1.5668 1.2860 0.0194 45 1.6786 1.4228 0.0353

55 1.7068 1.4502 0.0332
θ0 1.6 1.32 0.017 θ0 1.6 1.32 0.017 θ0 1.6 1.32

Table 1: The estimated parameters using the Dirac and spline approximation methods
for the discrete distribution.

The estimated distribution using the spline method is not able to replicate the large
jump at k0 = 1100 cm−1, even when using as many as N = 55 nodes. However, in
general, the estimated distributions are reasonable approximations to the true distribu-
tion. This result is somewhat unexpected since we only can guarantee convergence of
the spline method if the probability density function is absolutely continuous [8]. The
estimated scalar values are all over estimated, and in particular the estimated values
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Oscillator (j) Sj τj k0j σj
1 6.2021e+04 0.0060 600.22 88.37
2 1.9846e+04 0.0135 839.29 56.89
3 1.6175e+02 0.0064 839.87 119.82
4 2.7413e+04 0.0968 1103.13 14.17
5 1.7871e+05 0.0124 1123.55 19.92
6 1.3596e+04 0.0317 1207.65 17.02

Table 2: The estimated values of the intensities Sj, the relaxation times τj, the res-
onance wavenumbers k0j and the standard deviations σj for each oscillator using the
modified Efimov approach, using the simulated data with a discrete distribution.

of τ are not close to the true value. This is consistent with the results in [4], in which
it was shown that it is extremely difficult to accurately estimate the relaxation time τ .

In Table 2 we give the estimated values for the individual oscillators using the
modified Efimov model. We expect to see an oscillator centered near 1100 cm−1 with a
narrow broadening (i.e. a small standard deviation) to describe the jump discontinuity
in the distribution. Indeed, we see that the 4th oscillator is centered at k04 = 1103.13
cm−1 and has a standard deviation of σj = 14.17. Unexpectedly we also see that
the 5th and 6th oscillators also have a narrow broadening. Furthermore, using the
Efimov approach, it is difficult to associate the oscillator directly to the size of the
jump discontinuity in the distribution, one must look at the magnitude of the intensity
Sj relative to the other intensities to understand the relative “importance" of each
oscillator. That is, from Table 2 we would deduce that the 5th oscillator with an
intensity on the order to 105 has more importance compared to the 3rd oscillator
which has an intensity of 102 three orders of magnitude lower.

3.1.2 Continuous distribution

In this example we consider the case where the true distribution G0 is taken as a
truncated bivariate normal distribution with corresponding probability density function
g0 given by

G0(k0) =
β

σ1

√
2π

exp

(
−(k0 − µ1)2

2σ2
1

)
+

β

σ2

√
2π

exp

(
−(k0 − µ2)2

2σ2
2

)
, k0 ∈ [k0, k0].

(3.1)
In the above equation, we take µ1 = 850 cm−1, µ2 = 1050 cm−1, σ1 = 70, σ2 = 60,
k0 = 600 cm−1, k0 = 1400 cm−1 and β is the normalizing constant

β−1 =

∫ k0

k0

1

σ1

√
2π

exp

(
−(k0 − µ1)2

2σ2
1

)
+

1

σ2

√
2π

exp

(
−(k0 − µ2)2

2σ2
2

)
dk0. (3.2)

We expect that a CMC in an amorphous state would best be represented by a
continuous distribution.

In Figure 3, we see that both PMF methods achieve a very good fit to the data
where we set N = 25. Using the Dirac method, we see in Figure 4 that the estimated
distribution using N = 10 nodes is shifted to the right of the true distribution. As
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Figure 3: The model fits to the simulated data generated with a continuous distribution.
For the Dirac and spline approximation schemes the number of nodes was taken as
N = 25 (labeled as D25 and S25 respectively) and for the Efimov approach we have
J = 2 (labeled as E2).

Figure 4: The estimated distributions to the simulated data using a continuous distri-
bution using the Dirac approximation method (left) and using the spline approximation
method (right). For both methods we chose the number of nodes to be N = 10, 15, 20
and 25.

N is increased, the estimated distribution becomes a reasonable approximation of the
continuous distribution. The estimated distribution using the spline method gives an
excellent approximation of the true distribution except when N = 10. In this case,
there simply are not enough elements in the approximation scheme to accurately fit
the data. The Efimov approach is able to accurately fit the data with only J = 2
oscillators, which is not surprising since the true distribution is composed of two normal
distributions.

From Table 3, we see that the constant parameters are more accurately estimated
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Delta Approximation Spline Approximation Efimov Method
N εs ε∞ τ N εs ε∞ τ N εs ε∞
10 1.4519 1.1613 0.0101 10 1.9299 1.7017 0.0264 2 1.5747 1.3013
15 1.4107 1.1239 0.0112 15 1.5768 1.3040 0.0156
20 1.4011 1.1174 0.0116 20 1.5751 1.3074 0.0195
25 1.3909 1.1090 0.0124 25 1.5717 1.3077 0.0261
θ0 1.6 1.32 0.017 θ0 1.6 1.32 0.017 θ0 1.6 1.32

Table 3: The estimated parameters using the Dirac and spline approximation methods
for the simulated data with a continuous distribution.

Oscillator (j) Sj(1× 105) τj k0j σj
1 1.0170 0.0139 861.23 66.61
2 1.4794 0.0175 1057.06 60.07

Table 4: The estimated values of the intensities Sj, the relaxation times τj, the res-
onance wavenumbers k0j and the standard deviations σj for each oscillator using the
modified Efimov approach using the simulated data with a continuous distribution.

using the spline approximation scheme and the Efimov approach. However, again the
value for τ is difficult to estimate correctly.

In Table 4 we see that we obtain a good estimate for the relaxation time for the
second oscillator, but not for the first. The resonance wavenumbers and the stan-
dard deviations for both oscillators are a good estimation of the mean and standard
deviations of the bivariate normal distribution.

3.2 Inorganic glass data

To compare our approximation methods on experimental data sets, we present results
obtained using inorganic glass data available in [11]. These inorganic glasses have
properties similar to the materials which comprise the matrix in many CMCs. For
these data sets the incident angle is approximately φ ≈ 0◦.

3.2.1 Vitreous Silica

We first consider reflectivity data collected from Vitreous Silica in the 200 to 1350
cm−1 range (see Table A2 in [11]). In Figure 5 we present the model fits to the data
using the Dirac and spline approximations with N = 50 for both methods and using
the modified Efimov method with J = 8. We see that all of the methods are able to
obtain a good fit to the data.

In Figure 6 we present the estimated distributions using both PMF methods. It is
clear the the Dirac method gives consistent results for N = 30, 50 and 80, indicating
that the method has converged for a relatively low value of N . The spline method gives
consistent results for N = 50 and 80; the distribution obtained using N = 30 has the
same general characteristic shape as the other two distributions, but it is clearly an
outlier. Thus, we may assume that the spline method has not converged at N = 30, but
has by N = 50. In fact, once both methods have converged, they have converged to the
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Figure 5: The model fits to the Vitreous Silica data.. For the Dirac and spline approx-
imation schemes the number of nodes was taken as N = 50 (labeled as D50 and S50
respectively) and for the Efimov approach we have J = 8 (labeled as E8).

Figure 6: The estimated distributions to the Vitreous Silica data using the Dirac
approximation method (left) and using the spline approximation method (right). For
both methods we chose the number of nodes to be N = 30, 50 and 80.

same distribution. Although the estimated distribution has large jumps near k0 = 400
cm−1 and 1050 cm−1, we agin see the surprising result that the spline approximation
method is able to handle these regions of rapid change in the distribution.

In Table 5, we present the estimated parameter values using both PMF methods.
Notice that the estimated values of εs and ε∞ are very similar for N = 30 , 50 and
80 using the Dirac approximation method. However, the values for εs and ε∞ using
the spline method do not match the values obtained using the Dirac approximation at
N = 30, but do for N = 50 and 80. Thus, again indicating that the Dirac method
converges for a lower value of N than the spline method. We also see that the high
and low frequency limits are well approximated by the modified Efimov method.
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Delta Approximation Spline Approximation Efimov Method
N εs ε∞ τ N εs ε∞ τ N εs ε∞
30 3.7535 2.0845 0.0398 30 3.3489 1.5553 0.1032 8 3.7530 2.1384
50 3.7183 2.0487 0.0522 50 3.7079 2.0581 0.2020
80 3.6780 2.0153 0.0564 80 3.7019 2.0675 0.1851
θ0 3.8 2.1 θ0 3.8 2.1 θ0 3.8 2.1

Table 5: The estimated parameter values using the Dirac and spline approximation
methods to fit the Vitreous Silica data. The “true" parameter values θ0 are the exper-
imental values taken from [15].

Oscillator (j) Sj(1× 105) τj k0j σj
1 3.6176e+03 0.0183 311.63 66.62
2 1.4231e+05 0.0190 435.59 4.89
3 4.4941e+04 0.8445 459.17 8.71
4 1.8884e+04 0.0165 677.56 87.54
5 2.7526e+04 0.0282 806.88 9.48
6 1.4019e+03 0.0178 1014.97 34.98
7 5.2605e+05 1.6468 1077.90 21.29
8 1.1559e+05 0.0373 1166.09 46.83

Table 6: The estimated values of the intensities Sj, the relaxation times τj, the res-
onance wavenumbers k0j and the standard deviations σj for each oscillator using the
modified Efimov approach on the Vitreous Silica data.

The estimated values of the individual oscillators using the modified Efimov method
are given in Table 6. The 2nd, 3rd and 5th oscillators, centered at approximately 435,
459 and 806 cm−1, respectively, each have a very narrow broadening. The 2nd and
3rd oscillators correspond to the first large jump in the estimated distribution using
the PMF methods. The 5th oscillator is present in a region where the estimated
distribution does not contain a sharp jump.

3.2.2 Vitreous Germania

We next consider reflectivity data collected from Vitreous Germania in the 200 to
1350 cm−1 range (see Table A7 in [11]). In Figure 7 we present the model fit and the
estimated distributions using both the Dirac and spline methods with N = 50 and
using the modified Efimov method with J = 8. Once again, we obtain very good fits
to the data in all cases.

From Figure 8 we see that each estimation using the spline method gives consistent
results, and the estimation with N = 30 using the Dirac method does not match the
results using N = 50 and 80. In this case, the results suggest that the spline method
converges for a lower number of nodes than the Dirac method, but both methods do
converge to the same distribution. This should be expected since it appears as if the
estimated distribution is sufficiently smooth, and it is known [8] that the spline method
will outperform the Dirac method in this case.
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Figure 7: The model fits to the Vitreous Germania data. For the Dirac and spline
approximation schemes the number of nodes was taken as N = 50 (labeled as D50 and
S50 respectively) and for the Efimov approach we have J = 8 (labeled as E8).

Figure 8: The estimated distributions to the Vitreous Germania data using the Dirac
approximation method (left) and using the spline approximation method (right). For
both methods we chose the number of nodes to be N = 30, 50 and 80.

In Table 7 we present the estimated parameter values for both methods. This time
we see that the spline method gives consistent values for εs and ε∞, whereas for N = 30,
the values estimated using the Dirac method are the outliers. The estimated values for
εs and ε∞ using the modified Efimov approach are slightly higher than the estimates
using the PMF methods.

In Table 8 we present the individual oscillator estimates obtain from the modified
Efimov approach. In this case we see that the only oscillator which has a somewhat
narrow broadening is present at 958 cm−1. This oscillator has an intensity of 103, two
orders of magnitude lower than the largest estimated intensity. This indicates that the
modified Efimov approach agrees with the results seen using the PMF, that there are no
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Delta Approximation Spline Approximation Efimov Method
N εs ε∞ τ N εs ε∞ τ N εs ε∞
30 2.3992 1.7707 0.0779 30 2.0034 1.3320 0.4989 8 2.1844 1.5200
50 1.8961 1.3013 0.7741 50 2.0567 1.3854 0.2581
80 1.9068 1.3435 0.6250 80 2.0254 1.3659 0.4964

Table 7: The estimated parameter values using the Dirac and spline approximation
methods to fit the Vitreous Gernamia data.

Oscillator (j) Sj(1× 105) τj k0j σj
1 1.5434e+03 0.0159 511.79 68.73
2 2.6232e+03 0.0178 540.71 51.28
3 5.9389e+04 0.1661 565.51 35.91
4 4.4435e+04 0.0160 696.72 68.21
5 1.4581e+05 0.6777 812.01 40.25
6 9.9376e+04 1.1347 852.97 30.93
7 6.1715e+02 0.0157 940.72 69.75
8 7.1409e+03 0.4162 958.32 19.93

Table 8: The estimated values of the intensities Sj, the relaxation times τj, the res-
onance wavenumbers k0j and the standard deviations σj for each oscillator using the
modified Efimov approach on the data obtain from Vitreous Germania.

sharp jumps in the resonance wavenumber which characterize the Vitreous Germania
data.

3.2.3 Sodium Silicate

As a final consideration, we use reflectivity data collected from Sodium Silicate in the
40 to 1260 cm−1 range (see Table A3 in [11]). In Figure 9 we give the model fit to the
data and the estimated distributions using the Dirac and spline approximation schemes
using N = 25 and using the modified Efimov approach with J = 9.

We see that the estimated distributions using both methods agree very well for the
relatively low number of nodes, and the agreement is increased for N = 30 as is seen
from Figure 10. Additionally, in Table 9 we see that the estimated values of εs and ε∞
agree well for N = 30. Thus, it appears in this case that both the spline and Dirac
approximation methods have converged at a relatively low number of nodes. It should
be noted, that for this particular data set, there were 62 data points, which is why
we did not use a larger number of nodes than N = 30. Using the modified Efimov
approach, the estimated value of ε∞ is consistent with the results using the PMF, but
the value of εs does not match.

In Table 10 we present the estimation results for the oscillators using the modified
Efimov approach. In this case, the oscillator with the most narrow broadening is the
8th oscillator which is centered at 1057 cm−1. This oscillator corresponds to a region
of relatively gradual increase in the estimated distribution.
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Figure 9: The model fits to the Sodium Silicate data. For the Dirac and spline approx-
imation schemes the number of nodes was taken as N = 25 (labeled as D25 and S25
respectively) and for the Efimov approach we have J = 9 (labeled as E9).

Figure 10: The estimated distributions to the Sodium Silicate data using the Dirac
approximation method (left) and using the spline approximation method (right). For
both methods we chose the number of nodes to be N = 25 and 30.

Delta Approximation Spline Approximation Efimov Method
N εs ε∞ τ N εs ε∞ τ N εs ε∞
25 6.3266 2.1110 0.0200 25 5.7623 1.5496 0.0269 9 7.4048 2.1179
30 5.9747 2.0939 0.0240 30 5.9068 1.9573 0.0305

Table 9: The estimated parameter values using the Dirac and spline approximation
methods as compared to the Efimov method to fit the Sodium Silicate Silica data.
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Oscillator (j) Sj(1× 105) τj k0j σj
1 8.7256e+03 0.0191 95.82 24.06
2 3.7072e+04 0.0208 187.11 62.71
3 7.1957e+04 0.0292 412.24 53.15
4 9.0464e+04 0.0764 459.40 23.43
5 2.6822e+04 0.0279 638.16 53.20
6 3.9439e+04 0.0491 778.93 29.66
7 1.8828e+05 0.5529 986.26 40.27
8 2.7424e+05 0.0154 1057.79 13.43
9 9.9229e+04 0.0775 1122.55 65.13

Table 10: The estimated values of the intensities Sj, the relaxation times τj, the
resonance wavenumbers k0j and the standard deviations σj for each oscillator using
the modified Efimov approach on the Sodium Silicate data.
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4 Concluding remarks and future work

In this work we consider two contrasting methods of modeling the complex permit-
tivity of a material in which the number of dielectric mechanisms is unknown. Using
the PMF, we imposed a distribution on the resonance wavenumber and considered two
approximation schemes for estimating the unknown distribution. We also considered a
method which uses a convolution of Lorentz and Gaussian functions, the modified Efi-
mov approach. We considered both simulated and experimental data sets. Within the
context of the PMF, it is clear that considering the model fits alone are not sufficient
to determine which approximation scheme to use, since both consistently give good
model fits even if the estimated distributions vary. It is not surprising that the Dirac
methods are better suited to estimate a discontinuous distribution and that the spline
method are better suited to handle estimating a continuous distribution. In practice
of course, there in general is no prior knowledge as to the form of the unknown distri-
bution (continuous or discontinuous). Fortunately, we have illustrated in the examples
presented in this work that the spline approximation method gives reasonable estimates
even for the cases where the true distribution possesses discontinuities. Thus, it is our
recommendation that initially both methods should be used to do the inverse problem.
Once it is established that the estimated distributions using both methods sufficiently
agree, then the results obtained using the lowest number of nodes possible to achieve
this agreement should be used. This should minimize any effects of over parameteriza-
tion (see Section 3.1.1). Only after the distributions agree should the decision be made
as to whether the distribution appears to obtain discontinuities. If discontinuities (or
regions of relative rapid change) are present in the distribution, then the results using
the Dirac method would be preferred, and the results from the spline approximation
would be preferred for distributions which appear continuous in nature.

Using the modified Efimov method, we were also able to obtain very good model
fits to the data for both the simulated data and the inorganic glass data. It was seen
that using this approach, regions of rapid increase in the distribution will correspond
to oscillators with a narrow broadening. However, one pitfall to this approach is the
difficulty in ascertaining the relative “importance" of each oscillator, for which the
only indication is the estimated intensity. One advantage that the PMF approach
has over the modified Efimov approach is that the estimated distribution can easily
be interpreted. Furthermore, there is a strong theoretical foundation for the PMF
approximation schemes to converge as N →∞ (with the assumption that the density
function is absolutely continuous in the case of using splines), however, there is no
known sense of convergence as J →∞ in the Efimov approach.

In future work, we plan to consider experimental data sets obtained from CMCs
which have undergone various levels of heat treatment and attempt to use the methods
described here to ascertain levels of degradation. Additionally, we would like to under-
stand the mathematical and statistical model discrepancy and use this in an effort to
quantify the uncertainty in the probability distribution estimators.
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