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Abstract The inverse scattering problem of the reconstruction of the unknown potential
in the 3-d Schrödinger equation is considered. Unlike the conventional case of an inverse
scattering problem, here only the modulus of the complex valued scattered wave field is
assumed to be known outside of the scatterer. The phase is unknown. This problem arises
in inverse quantum scattering. Unlike the previous work of the authors [8], where the case of
the point source was studied, here the incident plane wave is considered. An explicit solution
via the inverse Radon transform is obtained.
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1 Introduction

The current paper is a continuation of our recent works [8, 9]. In [8] we have derived the
reconstruction formula for the unknown potential for the phaseless inverse scattering
problem (ISP) for the 3-d Schrödinger equation. This was done for the case when
the wave field is generated by the point source. We have considered the tomographic
measurement scheme and came up with the reconstruction formula via the inversion of
the Radon transform. It is worthy to note that a long standing problems posed in 1977
in Chapter 10 of the book [8] was addressed in [8] for the first time (see some details in
this section below). In [9] a similar inversion formula was obtained for the case of the
Born approximation for the wave-like equation ∆u+k2 (1 + β (x))u = −δ (x− x0) , x ∈
R3. The difference between this equation and the Schrödinger equation (4) is that in (4)
the unknown potential q (x) is not multiplied by k2. Unlike [8, 9], in the current paper
we consider the case of the incident plane wave. Again, we consider the tomographic
measurement scheme and again end up with the inversion of the Radon transform.
However, a modification of the technique of [8] is used here.

The Radon transform is well understood by now and has wide applications. Prob-
ably the most spectacular application is in medicine under the name Computerized
Tomography (CT). CT results in very high quality images, see, e.g. [28]. This leads us
to believe that images resulting from our formula of this paper as well as from [8, 9]
will also have a high quality.

The term “phaseless" means here that we assume that only the modulus of the
scattered complex valued wave field is measured outside of the support of the scatterer.
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However, the phase is not measured. This situation is typical in quantum scattering,
where only the so-called “differential scattering cross section" is measured, see page 8
of [19]. On the other hand, the entire theory of inverse scattering problems, including
quantum inverse scattering is based on the assumption that both the modulus and the
phase are measured [2, 19, 20, 21]. The latter has prompted the authors of the book
[2] to pose in Chapter 10 the question of the reconstruction of the potential of the
Schrödinger equation for the case of the phaseless data. However, this problem was
not addressed in [2]. The first complete solution of this problem was published in our
work [8], for the case of the point source. Below we do the same for the case of the
incident plane wave.

The phase reconstruction problem is the central one in many applied inverse prob-
lems, especially in the case when nano structures are probed by X-rays, see, e.g.
[3, 7, 24]. In addition, we refer to, e.g. [4, 6, 15, 18, 25] for some other phase recon-
struction techniques. However, the common drawback of all available methods of the
phase reconstruction is that there is no rigorous guarantee that the correct phase will
indeed be reconstructed. We refer to [1, 22] for rigorous approaches to the phase recon-
struction problem for the case when some known objects, in addition to the unknown
one, are involved in experiments. In [23] a rigorous phase reconstruction algorithm is
considered in a quite general situation for the case when the modulus of the total wave
field is measured on at least two spheres in the far zone. In both types of works [1, 22]
and [23] the modulus of the superposition of two wave fields, one of which is known,
is considered. Unlike these, we study here the case when the modulus of the scattered
wave field only is known, i.e. a superposition is not in place, and the same was in
[8, 9]. Uniqueness theorems for the 1-d case and 3-d cases were proven in [10, 18]
and [11, 12, 13, 14] respectively. However, those proofs are non-constructive ones.
Reconstruction procedures of [1, 22, 23] lead to corresponding uniqueness theorems.

2 The Main Result

Let B > 0 be a number and Ω = {|x| < B} ⊂ R3 be the ball of the radius B with
the center at {0}. Denote the corresponding sphere S = {|x| = B} . Let the potential
q (x) , x ∈ R3 be a real valued function such that

q(x) ∈ C4(R3), (1)

q(x) ≥ 0,∀x ∈ Ω, (2)

q(x) = 0 for x ∈ R3�Ω. (3)

We consider the following equation

∆u+ k2u− q(x)u = 0, x ∈ R3. (4)

Let
u(x, k, ν) = exp (ikx · ν) + usc(x, k, ν), (5)

where k > 0 is the frequency and u0 = exp (ikx · ν) is the incident plane wave prop-
agating in the direction of the unit vector ν ∈ S2, where S2 = {x ∈ R3 : |x| = 1} . In
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(5) usc(x, k, ν) is the scattering wave field. It satisfies the equation

∆usc + k2usc − q(x)usc = q(x) exp (ikx · ν), x ∈ R3 (6)

with the usual radiation conditions

usc(x, k, ν) = O

(
1

r

)
, r →∞, (7)

∂usc
∂r
− ikusc = o(r−1) , |r| → ∞, (8)

where r = |x| .
Theorem 3.3 of the paper of [26], Theorem 6 of Chapter 9 of [27] as well as Theorem

6.17 of [5] guarantee that for each pair (k, ν) ∈ (0,∞)×S2 there exists a unique solution
u (x, x0, k) of the problem (6)-(8) such that usc ∈ C4 (R3) .

For any number a ∈ R consider the plane Pa = {x3 = a} . Consider the disk Qa =
Ω ∩ Pa and let Sa = S ∩ Pa be its boundary. Clearly Qa 6= ∅ for a ∈ (−B,B) and
Qa = ∅ for |a| ≥ B. Denote 0a = (0, 0, a) ∈ Qa the orthogonal projection of the origin
on the plane Pa. We have

Ω =
B⋃

a=−B

Qa, ∂Ω := S =
B⋃

a=−B

Sa.

Let

S2
0 =

{
ν = (ν1, ν2, ν3) ∈ S2 : ν3 = 0

}
,

Sa(ν) = {x ∈ Sa : x · ν > 0}.

In our inverse problem we assume that the modulus |usc| of the scattered wave is
measured for all pairs (x ∈ Sa(ν), ν ∈ S2

0), for every a ∈ (−B,B) and for all frequencies
k > 0.

Phaseless Inverse Scattering Problem. Suppose that the potential q (x) sat-
isfies conditions (1)-(3). Determine the function q (x) for x ∈ Ω, assuming that the
following function f (x, k, ν) is known

f (x, k, ν) = |usc (x, k, ν)| ,∀x ∈ Sa(ν),∀ν ∈ S2
0 , ∀a ∈ (−B,B) , ∀k ∈ (0,∞) . (9)

Remark 1. As to the issue of collecting experimental data, it follows from (9) and
Theorem 1 that if one wants to image only one 2-d cross-section Qa of the potential
q, then it is sufficient to run independently detectors x only around the semicircle
Sa(ν) and the vector ν along the circle S2

0 . This is more economical than running them
independently around S × S2.

To formulate our inversion formula, we introduce now some notations of the con-
ventional Radon transform [17]. For an arbitrary a ∈ (−B,B) and for any pair (x ∈
Sa(ν), ν ∈ S2

0) let L̃ (x, ν) be the straight passing through the point x and parallel to the



Explicit solution of a 3-d phaseless inverse scattering problem 51

vector ν. Therefore, L̃ (x, ν) is lying in the plane Pa, L̃ (x, ν) ⊂ Pa. Next, let L (x, ν)

be the part of L̃ (x, ν) , which is inside of the disk Qa, i.e. L (x, ν) = L̃ (x, ν) ∩Qa.
Since our reconstruction formula is based on the inversion of the two-dimensional

Radon transform, we now parameterize L (x, ν) in the conventional way of the parametri-
zation of the Radon transform [17]. For (x ∈ Sa(ν), ν ∈ S2

0) let n be the unit normal
vector to the line L̃ (x, ν) lying in the plane Pa and pointing outside of the point 0a. Let
α ∈ (0, 2π] be the angle between n and the x1−axis. Then n = n (α) = (cosα, sinα)
(it is convenient here to discount the third coordinate of n, which is zero). Let s be
the signed distance between L (x, ν) and the point 0a (page 9 of [17]). It is clear that
there exists a one-to-one correspondence between pairs (x, ν) and (n (α) , s) ,

(x, ν)⇔ (n (α) , s) ; (x ∈ Sa(ν), ν ∈ S2
0), α = α (x, ν) ∈ (0, 2π] , s = s (x, ν) ∈ (−Ba, Ba) ,

(10)
where Ba =

√
B2 − a2 is the radius of the circle Sa. Hence, we can write

L (x, ν) = {ya = (y1, y2, a) ∈ Qa : y · n(α) = s} , (11)

where y = (y1, y2) ∈ R2 and parameters α = α (x, ν) and s = s (x, ν) are defined as in
(10).

Consider an arbitrary function g = g (y) ∈ C4 (Pa) such that g (y) = 0 for y ∈
Pa�Qa. Hence, ∫

L(x,ν)

g (y) dσ =

∫
y·n(α)=s

g (y) dσ, ∀x ∈ Sa(ν), ∀ν ∈ S2
0 , (12)

where α = α (x, ν) , s = s (x, ν) are as in (10). In (12) σ is the arc length and the
parametrization of L (x, ν) is given in (11). Therefore, using (10)-(12), we can define
the 2-d Radon transform Rg of the function g as

(Rg) (x, ν) = (Rg) (α, s) =

∫
y·n(α)=s

g (y) dσ. (13)

We are ready now to formulate Theorem 1, which is our main result.

Theorem 1. Suppose that the potential q(x) satisfies conditions (1)-(3). Let
usc(x, k, ν) be the function defined in (6)-(8). Then for each a ∈ (−B,B) and for
each pair (x ∈ Sa(ν), ν ∈ S2

0) the asymptotic behavior of usc(x, k, ν) is

|usc(x, k, ν)| = 1

2k

∫
L(x,ν)

q(ξ)dσ +O

(
1

k2

)
, k →∞. (14)

Hence, the asymptotic behavior of the function f(x, k, ν) defined in (9) is

f(x, k, ν) =
1

2k

[
(Rq)(x, ν) +O

(1

k

)]
, k →∞;∀x ∈ Sa(ν), ∀ν ∈ S2

0 , (15)

for all a ∈ (−B,B) . Thus, for y ∈ Qa, a ∈ (−B,B) the reconstruction formula for the
function q (y, a) is

q(y, a) = 2R−1{ lim
k→∞

[kf(x, k, ν)]}(y, a). (16)
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Since the inversion formula (16) follows immediately from (12), (13), (15) and the
results of the book [17], we focus below on the proof of (14). Since the explicit form of
the operator R−1 is well known [17], we are not citing it here for brevity. We assume
everywhere below that conditions of Theorem 1 are satisfied. The goal of the rest of
this paper is to prove this theorem.

3 Smoothness of the solution of a Cauchy problem for a hyper-
bolic equation

We prove (14) using connection between the problem (6)-(8) and the solution of a
certain Cauchy problem for a hyperbolic PDE via the Fourier transform. To do this,
we investigate first the smoothness property of this solution.

Consider the hyperbolic equation

vtt −∆v + q (x) v = −q(x)δ(t− x · ν), (x, t) ∈ R4 (17)

with the initial condition
v|t<x·ν ≡ 0. (18)

For any T > 0 and for any ν ∈ S2 denote

G(T,B, ν) = {(x, t) : x · ν < t < T − |x|, t+ x · ν > −2B}

and by G(T,B, ν) its closure. Theorem 2 establishes a smoothness property of the
solution v (x, t, ν) of the Cauchy problem (17), (18). Below C = C (T,B) denotes
different positive constants depending on listed parameters.

Theorem 2. The solution of the problem (17), (18) v(x, t, ν) vanishes for t+x·ν <
−2B and for k = 0, 1, 2 ∂kt v(x, t, ν) ∈ C(G(T,B, ν)), ∀T > 0,∀ ν ∈ S2. Moreover, the
following limit is valid

v|t=x·ν+0 = a(x, ν) = −1

2

∫
L−(x,ν)

q(ξ)dσ = −1

2

∞∫
0

q(x− sν)ds, (19)

where L−(x, ν) = {ξ : ξ = x − sν, s ∈ [0,∞)} is the ray that is going from point x in
the direction −ν.

Corollary. The function ∆xv(x, t, ν) ∈ C(G(T,B, ν)).

Proof of Corollary. By (17)

∆v = vtt + q (x) v, t > x · ν.

By Theorem 2 the function in the right hand side belongs to C(G(T,B, ν)). Hence, the
function ∆v ∈ C(G(T,B, ν)). �

Proof of Theorem 2. The function v(x, t, ν) for t > x · ν satisfies the following
integral equation

v(x, t, ν) = − 1

4π

∫
R3

q(y)[δ(t− y · ν − |x− y|) + v(y, t− |x− y|, ν)]
dy

|x− y|
. (20)
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We represent the solution to this equation as

v(x, t, ν) =
∞∑
n=0

vn(x, t, ν), t ≥ x · ν, (21)

where

v0(x, t, ν) = − 1

4π

∫
R3

q(y)δ(t− y · ν − |x− y|)
|x− y|

dy, (22)

vn(x, t, ν) = − 1

4π

∫
R3

q(y)vn−1(y, t− |x− y|, ν)

|x− y|
dy

= − 1

4π

∫
y·ν+|x−y|≤t

q(y)vn−1(y, t− |x− y|, ν)

|x− y|
dy, n ≥ 1. (23)

The latter equality valid since vn(y, t− |x− y|, ν) ≡ 0 for all t− |x− y| < y · ν and for
all n = 1, 2, . . ..

For t > x · ν denote by S(x, t, ν) the following paraboloid

S(x, t, ν) = {y ∈ R3 : y · ν + |x− y| = t}. (24)

If t → (x · ν)+, then S(x, t, ν) degenerates into the ray L−(x, ν), which goes from the
point x in the direction −ν.

Consider the orthogonal coordinate system ξ1, ξ2, ξ3 with the origin at the point x.
Let orthogonal unite vectors e1, e2 and e3 be directed along axis ξ1, ξ2 and ξ3 respec-
tively. We choose the system ξ1, ξ2, ξ3 such that e1 = ν and e2 and e3 as the orthogonal
to e1 and to each other. Let φ ∈ [0, 2π) and θ ∈ [0, π] be angles in the spherical coor-
dinate system associated with the system ξ1, ξ2, ξ3. Then for the sake of definiteness,
we set

e1 = ν = (sin θ cosφ, sin θ sinφ, cos θ),

e2 = (cos θ cosφ, cos θ sinφ,− sin θ). (25)
e3 = (− sinφ, cosφ, 0).

Moreover, we consider the cylindrical coordinates z, r, ψ associated with the system ξ1,
ξ2, ξ3. More precisely, we set ξ1 = z, ξ2 = r cosψ, ξ3 = r sinψ, ψ ∈ [0, 2π]. Then

y = x+ ξ, ξ = e1z + e2r cosψ + e3r sinψ, (26)

Equation (24), which defines S(x, t, ν) can be written in the form

S(x, t, ν) =
{

(r, z) : z + (z2 + r2)1/2 = t− x · ν
}
,

or
r = r(t− x · ν, z) =

√
(t− x · ν)(t− x · ν − 2z). (27)
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Change variables (y1, y2, y3) ↔ (t, z, ψ) using formulas (26), (27) which connect y
and (t, z, ψ). Then

dy

|x− y|
=
dξ

|ξ|
=
rrt
|ξ|
dtdzdψ = dtdzdψ.

Hence,

v0(x, t, ν) = − 1

4π

∫
S(x,t,ν)

q(y)dzdψ = −
2π∫

0

(t−x·ν)/2∫
−∞

q(y)dzdψ (28)

= J(x, t− x · ν, ν), t > x · ν.

Here

J(x, τ, ν) = − 1

4π

2π∫
0

τ/2∫
−∞

q(x+ e1z +
√
τ(τ − 2z)p)dzdψ, (29)

p = e2 cosψ + e3 sinψ. (30)

Note that

J(x, 0+, ν) = a(x, ν) = −1

2

0∫
−∞

q(x+ zν)dz. (31)

Indeed, if τ = 0 then (29) implies that the square root in the integrand in (29) vanishes
and the resulting function q(x+ zν) does not depend on ψ. It follows from (31) that

2∇a(x, ν) · ν = −q(x), (32)
a(x, ν) = 0 if x · ν < −B. (33)

The equality (33) is true because if x · ν < −B and z ≤ 0, then (x + zν) · ν < −B.
This means that the point (x+ zν) as well as the point x lie outside of Ω and therefore
q(x+ zν) = 0 for all z ∈ (−∞, 0]. Hence, a(x, ν) = 0 in this case. Let D̂(x, t, ν) be the
interior of the paraboloid S(x, t, ν),

D̂(x, t, ν) =
{
y ∈ R3 : y · ν + |x− y| < t

}
.

Then for each x ∈ R3 and ν ∈ S2 there exists a number τ ∗(x, ν) > 0 such that for all
t > x · ν+ τ ∗(x, ν) the domain Ω is a subset of D̂(x, t, ν). Since q (x) = 0 for x ∈ R3 \Ω
and S(x, t, ν) is the boundary of D̂(x, t, ν), then

J(x, τ, ν) = 0 for all τ ≥ τ ∗(x, ν).

Hence, for each pair x, ν the function J(x, τ, ν) is a finite support with respect to τ .
Hence, v0(x, t, ν) also has a finite support with respect to t for each pair x, ν.

Let T > 0 be a fixed number. It follows from (28), (29) that v0(x, t, ν) is a con-
tinuous function for all (x, t) ∈ D(T, ν) = {(x, t) : x · ν ≤ t ≤ T − |x|}. Consider the
projection of the ball Ω on the straight line y = x+ zν, z ∈ (−∞,+∞) and denote by
[z1, z2] the segment of this line containing the projection of Ω. Simple calculations lead
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to the following equalities z1 = z1(x · ν) = −B − x · ν, z2 = z2(x · ν) = B − x · ν. The
integrand in (29) vanishes if τ/2 ≤ z1(x ·ν), i.e., if (t−x ·ν)/2 ≤ −x ·ν−B. Indeed, in
this case the paraboloid S(x, t, ν) does not intersect Ω, because the integration segment
with respect to z in (29) has no intersection with [z1, z2]. Hence, v0(x, t, ν) = 0 for
t ≤ −x · ν − 2B. Hence, we can consider v0(x, t, ν) only inside of the domain

G(T,B, ν) = D(T, ν) ∩ {(x, t) : t+ x · ν ≥ −2B}. (34)

If τ/2 ≥ z1, then the intersection [z1, z2] ∩ (−∞, τ/2] 6= ∅ and the length of this
intersection does not exceed 2B. Hence, the following estimate holds

|v0(x, t, ν)| = |J(x, t− x · ν, ν)| ≤ q0B, (x, t) ∈ G(T,B, ν), (35)

where q0 = ‖q‖C(Ω).
We now calculate the derivative ∂τJ(x, τ, ν). We have

∂τJ(x, ν, τ) = −1

4
q
(
x+e1

τ

2

)
− 1

4π

2π∫
0

τ/2∫
−∞

∇q(y) ·(e2 cosψ+e3 sinψ)
(τ − z)dzdψ√
τ(τ − 2z)

, (36)

where
y = x+ e1z +

√
τ(τ − 2z)(e2 cosψ + e3 sinψ). (37)

Integrating by parts with respect to ψ, we obtain

∂τJ(x, ν, τ) = −1

4
q
(
x+ e1

τ

2

)
(38)

− 1

4π

2π∫
0

τ/2∫
−∞

∇(∇q(y) · (e2 sinψ − e3 cosψ)) · (e2 sinψ − e3 cosψ)(τ − z)dzdψ.

Hence,

∂τJ(x, 0+, ν) = −1

4
q(x) +

1

4

0∫
−∞

[∇(∇q(y) · e2) · e2 +∇(∇q(y) · e3) · e3]y=x+zνzdz

=
1

4

0∫
−∞

[∇(∇q(y) · e1) · e1 +∇(∇q(y) · e2) · e2 +∇(∇q(y) · e3) · e3]y=x+zνzdz

=
1

4

0∫
−∞

∆q(x+ zν)zdz =
1

4
∆

0∫
−∞

q(x+ zν)zdz (39)

= −1

2
∆

0∫
−∞

∇a(x+ zν, ν) · νzdz =
1

2
∆

0∫
−∞

a(x+ zν, ν)dz

=
1

2

0∫
−∞

∆a(x+ zν, ν)dz.
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Function ∂tv0(x, t, ν) is continuous for all (x, t) ∈ D(T, ν). Since in (39) function q(y)
does not vanish only for z ∈ [z1, z2], we obtain the estimate

|∂tv0(x, t, ν)| ≤ Cq2, (x, t) ∈ G(T,B, ν), (40)

where q2 = ‖q‖C2(Ω).
Estimate now the second derivative ∂2

τJ(x, τ, ν). Using (38), we find

∂2
τJ(x, τ, ν) = −1

8
∇q
(
x+ e1

τ

2

)
· e1

−τ
8

[∇(∇q(y) · e2) · e2 +∇(∇q(y) · e3) · e3]y=x+e1τ/2

− 1

4π

2π∫
0

τ/2∫
−∞

∇(∇q(y) · (e2 sinψ − e3 cosψ)) · (e2 sinψ − e3 cosψ)dzdψ + I(x, τ, ν), (41)

where

I(x, τ, ν) =
1

4π

2π∫
0

τ/2∫
−∞

∇[∇(∇q(y) · (e2 sinψ − e3 cosψ))

·(e2 sinψ − e3 cosψ)] · (e2 sinψ − e3 cosψ)
(τ − z)2√
τ(τ − 2z)

dzdψ.

Integrate by parts in this integral with respect to ψ. To do this, we first represent the
integrand in the form

∇[∇(∇q(y) · (e2 sinψ − e3 cosψ)) · (e2 sinψ − e3 cosψ)] · (e2 sinψ − e3 cosψ)

=
1

4
{∇[∇(∇q(y)·e2)·e2]·e2(3 sinψ−sin(3ψ))+3∇[∇(∇q(y)·e2)·e2]·e3(cos(3ψ)−cosψ)

+3∇[∇(∇q(y) ·e2) ·e3] ·e3(sinψ+sin(3ψ))+∇[∇(∇q(y) ·e3) ·e3] ·e3(3 cosψ−cos(3ψ))}.

Then

I(x, τ, ν) = − 1

16π

2π∫
0

τ/2∫
−∞

∇{∇[∇(∇q(y) · e2) · e2] · e2(−3 cosψ + cos(3ψ)/3)

+3∇[∇(∇q(y) · e2) · e2] · e3(sin(3ψ)/3− sinψ)

+3∇[∇(∇q(y) · e2) · e3] · e3(−cosψ − cos(3ψ)/3) (42)
+∇[∇(∇q(y) · e3) · e3] · e3(3 sinψ − sin(3ψ)/3)}
·(e2 sinψ − e3 cosψ)(τ − z)2dzdψ.

It follows from (41) and (42) that the function ∂2
t v0(x, t, ν) ∈ C

(
G(T,B, ν)

)
and∣∣∂2

t v0(x, t, ν)
∣∣ ≤ Cq4, (x, t) ∈ G(T,B, ν), (43)
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where q4 = ‖q‖C4(Ω).
For n ≥ 1 consider now functions vn(x, t, ν) in (23). Since the function v0(x, t, ν) ≡ 0

for all t+ x · ν ≤ −2B, we conclude that all vn(x, t, ν) have the same property:

vn(x, t, ν) = 0 if t+ x · ν ≤ −2B, n ≥ 1.

Hence, we can consider these functions only inside the domain G(T,B, ν) defined in
(34). In this domain t ≥ −B + |x · ν + B| = t0 = t0(x · ν). For (x, t) ∈ G(T,B, ν) we
represent the domain of the integration in (23) as the union of paraboloids S(x, t′, ν)
for t′ ∈ [x · ν, t]. On the paraboloid S(x, t′, ν) we have t− |x− y| = t− t′ + y · ν, where
z belongs to the interval (−∞, (t′ − x · ν)/2]. Then equation (23) for the function
vn(x, t, ν) can be written as

vn(x, t, ν) = − 1

4π

t∫
x·ν

∫
S(x,t′,ν)

q(y)vn−1(y, t− t′ + y · ν, ν)dzdψdt′

= − 1

4π

t∫
x·ν

2π∫
0

(t′−x·ν)/2∫
−∞

q(y)vn−1(y, t− t′ + y · ν, ν)dzdψdt′, (44)

where
y = x+ e1z +

√
(t′ − x · ν)(t′ − x · ν − 2z)(e2 cosψ + e3 sinψ).

It follows from (44) that functions vn(x, t, ν) ∈ C
(
G(T,B, ν)

)
, n ≥ 1. Using (36) and

noting that q(y) vanishes for z 6∈ [z1(x · ν), z2(x · ν)], we get

|v1(x, t, ν)| ≤ (Bq0)2(t− x · ν),

|v2(x, t, ν)| ≤ (Bq0)2 q0

2

t∫
x·ν

z2(x·ν)∫
z1(x·ν)

(t− t′)dzdt′ = (Bq0)3 (t− x · ν)2

2!
.

Using the method of the mathematical induction, it easy to prove that for all n ≥ 1
the following estimates hold

|vn(x, t, ν)| ≤ (Bq0)n+1 (t− x · ν)n

n!
≤ (Bq0)n+1T

n

n!
, (x, t) ∈ G(T,B, ν). (45)

Hence, the series (21) is uniformly converges in the space C
(
G(T,B, ν)

)
. Moreover,

the following estimate is valid for the sum v(x, t, ν) of this series

|v(x, t, ν)| ≤ Bq0 exp(Bq0T ), (x, t) ∈ G(T,B, ν).

We prove now that the first derivative of v(x, t, ν) with respect to t exists and it is a
continuous function in G(T,B, ν). To do this we prove first the existence of ∂tvn(x, t, ν)
for n ≥ 1 and obtain estimates for them. Using (44) we have

∂tv1(x, t, ν) = − 1

4π

2π∫
0

(t−x·ν)/2∫
−∞

q(y)v0(y, y · ν, ν)dzdψ

− 1

4π

t∫
x·ν

2π∫
0

(t′−x·ν)/2∫
−∞

q(y)∂tv0(y, t− t′ + y · ν, ν)dzdψdt′. (46)
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Since the function v0(x, t, ν) and its derivative ∂tv0(x, t, ν) are continuous in G(T,B, ν),
then (46) implies that ∂tv1(x, t, ν) is also a continuous function in G(T,B, ν). Note
that integration intervals with respect to z in the integral terms do not exceed 2B.
Using (35), (40), we obtain the estimate

|∂tv1(x, t, ν)| ≤ Bq2
0 + CBq2q0(t− x · ν) ≤ Cq2q0, (x, t) ∈ G(T,B, ν). (47)

We now estimate functions ∂tvn(x, t, ν) for n ≥ 2. The equation for ∂tvn(x, t, ν),
n ≥ 2, has the form

∂tvn(x, t, ν) = − 1

4π

2π∫
0

(t−x·ν)/2∫
−∞

q(y)vn−1(y, y · ν, ν)dzdψ

− 1

4π

t∫
t−x·ν

2π∫
0

(t′−x·ν)/2∫
−∞

q(y)∂tvn−1(y, t− t′ + y · ν, ν)dzdψdt′. (48)

Note that, by (45), vn−1(y, y·ν, ν) = 0 for all n ≥ 2. Hence, the equation for ∂tvn(x, t, ν),
n ≥ 2, can be written as

∂tvn(x, t, ν) = − 1

4π

t∫
t−x·ν

2π∫
0

(t′−x·ν)/2∫
−∞

q(y)∂tvn−1(y, t− t′ + y · ν, ν)dzdψdt′. (49)

Again, since the function ∂tv1(x, t, ν) are continuous in C
(
G(T,B, ν)

)
, then (49) im-

plies that all functions ∂tvn(x, t, ν) ∈ C
(
G(T,B, ν)

)
for n ≥ 2. Using estimate (47),

we obtain

|∂tv2(x, t, ν)| ≤ Cq2
0q2

4π

t∫
x·ν

2π∫
0

z2(x·ν)∫
z1(x·ν)

dzdψdt′ ≤ Cq2Bq
2
0(t− x · ν).

Then

|∂tv3(x, t, ν)| ≤ Cq2Bq
3
0

4π

t∫
x·ν

2π∫
0

z2(x·ν)∫
z1(x·ν)

(t− t′′ ≤ Cq2B
2q3

0

(t− x · ν)2

2!
.

Using the method of the mathematical induction, we similarly prove that the following
estimate holds for all (x, t) ∈ G(T,B, ν)

|∂tvn(x, t, ν)| ≤ Cq0q2(Bq0)n−1 (t− x · ν)n−1

(n− 1)!
≤ Cq0q2(Bq0)n−1 T n−1

(n− 1)!
, n ≥ 2. (50)

Hence, the series
∞∑
n=0

∂tvn(x, t, ν)

converges uniformly in the space C
(
G(T,B, ν)

)
and its sum coincides with ∂tv(x, t, ν) ∈

C
(
G(T,B, ν)

)
.
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Next, we use the similar ideas to prove that the second derivatives ∂2
t vn(x, t, ν) are

continuous in G(T,B, ν) and the series from the second derivatives uniformly converges
in the space C

(
G(T,B, ν)

)
. Differentiating (48) with respect to t, we obtain

∂2
t vn(x, t, ν) = − 1

4π

∂

∂t

2π∫
0

(t−x·ν)/2∫
−∞

q(y)vn−1(y, y · ν, ν)dzdψ

− 1

4π

2π∫
0

(t−x·ν)/2∫
−∞

q(y)∂tvn−1(y, y · ν, ν)dzdψ (51)

− 1

4π

t∫
t−x·ν

2π∫
0

(t′−x·ν)/2∫
−∞

q(y)∂2
t vn−1(y, t− t′ + y · ν, ν)dzdψdt′.

Calculate separately the first term in this equality, which we denote as In(x, t, ν). We
have

In(x, t, ν) = − 1

4π

∂

∂t

2π∫
0

(t−x·ν)/2∫
−∞

q(y)vn−1(y, y · ν, ν)dzdψ

= −1

4
q

(
x+

t− x · ν
2

ν

)
vn−1

(
x+

t− x · ν
2

ν, x · ν +
t− x · ν

2

)

− 1

4π

2π∫
0

(t−x·ν)/2∫
−∞

∇[q(y)vn−1(y, y · ν, ν)] · (e2 cosψ + e3 sinψ)

× t− x · ν − z√
(t− x · ν)(t− x · ν − 2z)

dzdψ,

where y is given by (37). Integrating by parts with respect to ψ, we obtain

In(x, t, ν) = −1

4
q

(
x+

t− x · ν
2

ν

)
vn−1

(
x+

t− x · ν
2

ν, x · ν +
t− x · ν

2

)

− 1

4π

2π∫
0

(t−x·ν)/2∫
−∞

∇{∇[q(y)vn−1(y, y · ν, ν)] · (e2 sinψ − e3 cosψ)}

·(e2 sinψ − e3 cosψ)(t− x · ν − z)dzdψ.

Note that vn(x, x · ν, ν) = 0 for n ≥ 1 and

v0(x, x · ν, ν) = −1

2

0∫
−∞

q(x+ zν)dz.

Therefore In(x, t, ν) = 0 for n > 1 and I1(x, t, ν) is a continuous function for (x, t) ∈
G(T,B, ν) and for it the following estimate holds

|I1(x, t, ν)| ≤ Cq2
2, (x, t) ∈ G(T,B, ν).
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Using (51), we sequentially obtain that the functions ∂2
t vn(x, t, ν), n = 1, 2, . . . are

continuous for (x, t) ∈ G(T,B, ν). Moreover, one can easily check that the following
estimates hold

|∂2
t vn(x, t, ν)| ≤ Cqn+1

4 , (x, t) ∈ G(T,B, ν), n = 1, 2.

By (50), ∂tvn(x, x · ν, ν) = 0 for n ≥ 2. Hence, starting from n = 3 all functions
∂2
t vn(x, t, ν) are determined by the relations

∂2
t vn(x, t, ν) = − 1

4π

t∫
t−x·ν

2π∫
0

(t′−x·ν)/2∫
−∞

q(y)∂2
t vn−1(y, t− t′ + y · ν, ν)dzdψdt′.

From here, using (43), we obtain for (x, t) ∈ G(T,B, ν) the estimates

|∂2
t vn(x, t, ν)| ≤ Cq3

4(q0B)n−2 (t− x · ν)n−2

(n− 2)!
≤ Cq3

4(q0B)n−2 T n−2

(n− 2)!
, n ≥ 3.

Thus, the series
∞∑
n=0

∂2
t vn(x, t, ν)

uniformly converges in the space C
(
G(T,B, ν)

)
and its sum is the function ∂2

t v(x, t, ν) ∈
C
(
G(T,B, ν)

)
. �

4 Proof of Theorem 1

Consider again the solution v (x, t, ν) of the Cauchy problem (17), (18). By Theorem
2 and Corollary functions ∆xv(x, t, ν), ∂kt v(x, t, ν) ∈ C

(
G(T,B, ν)

)
, k = 0, 1, 2. Let

Φ ⊂ R3 be an arbitrary bounded domain. We now refer to Lemma 6 of Chapter
10 of the book [27] as well as to Remark 3 after that lemma. It follows from these
results that functions ∂kt v(x, t, ν), k = 0, 1, 2 and ∆xv(x, t, ν) decay exponentially as
t → ∞ as longs as x reminds in the domain Φ. In other words, there exist constants
M = M (Φ, q) , c = c (Φ, q) > 0 such that∣∣∂kt v (x, t, ν)

∣∣ , |∆v(x, t, ν)| ≤Me−c t for all t ≥ |x · ν| and for all x ∈ Φ. (52)

Hence, one can consider the Fourier transform V (x, k, ν) of the function v,

V (x, k, ν) =

∞∫
x·ν

v (x, t, ν) exp (−ikt) dt.

Now we again refer to Theorem 3.3 of the paper of [26] and Theorem 6 of Chapter
9 of [27]. These results guarantee that V (x, k, ν) = usc(x, k, ν), where the function
usc(x, k, ν) is the above solution of the problem (6)-(8).
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Thus,

usc(x, k, ν) =

∞∫
x·ν

exp(−ikt)v(x, t, ν)dt. (53)

v|t=x·ν+0 = a(x, ν) = −1

2

∫
L−(x,ν)

q(ξ)dσ = −1

2

∞∫
0

q(x− sν)ds, (54)

Applying the integration by parts Theorem 2 to (53), we obtain

usc(x, k, ν) = −i exp(−ikx · ν)

k
v(x, (x · ν)+, ν) +O

(
1

k2

)
, k →∞.

Hence, by (54)

usc(x, k, ν) =
i exp(−ikx · ν)

2k

∫
L−(x,ν)

q(ξ)dσ +O

(
1

k2

)
, k →∞.

Since by (2) q ≥ 0, then

|usc(x, k, ν)| = 1

2k

∫
L−(x,ν)

q(ξ)dσ +O

(
1

k2

)
, k →∞.

This formula coincides with the formula (14). �
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