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B O D Y  W IT H  M IR R O R  SURFACE A N D  C O N N E C T E D  
IN T E R IO R  INVISIBLE FR O M  O NE P O IN T

A . Aleksenko

Abstract Here we demonstrate existence of a piecewise smooth obstacle having connected 
interior and invisible from a point in the framework of geometric optics.
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1 Introduction

The scattering theory prohibits existence of absolutely invisible bodies, since a nontriv­
ial outgoing solution of the Helmholtz equation cannot have zero scattering amplitude. 
Nevertheless, invisibility is possible in the framework of geometric optics which in­
volves mathematical design of bodies with well-defined surfaces whose scattering map 
preserves certain trajectories of a flow of elastic particles. The main practical applica­
tion of this study is optical shielding: by surrounding an object by a specially designed 
mirror surface, it is possible to create an illusion of invisibility from given points or 
directions.

The first work that targets the problem of designing a body invisible in a direction 
in the framework of mirror invisibility appears in [1] and is motivated by the problem 
of constructing a nonconvex body or zero resistance. The authors demonstrated that 
there exists a (connected and even simply connected) body invisible in one direction: if 
this body is manufactured out of perfectly reflective mirrors, a laser beam sent through 
this construction in the direction of invisibility would leave the body along the same 
trajectory. Remarkably, in [5], [6], [7] the scattering of acoustic waves by this body was 
studied.

This pioneering research led to several intriguing mathematical problems. One 
of them, proposed by Sergei Tabachnikov [4], asks whether it is possible to design 
a body with mirror surface invisible in two directions. The problem was solved by 
Plakhov and Roshchina in [8]: it was shown that a construction combining several 
pieces of parabolic cylinders can be used to produce a body invisible in two directions 
in the three-dimensional case. This body consists of two connected components, and 
its interior consists of 8 connected components, so it looks complicated to use such a 
construction in practical applications. The main result of the paper is the following 
Theorem 1 (see figure 2).

Theorem 1 .1 . Given a point in 1R3; there exists a body in Ш3 with connected interior 
which is invisible from this point.



Figure 1: A body invisible from one point.

1 Definitions

We begin with reminding relevant definitions, then explain our construction and prove 
that it is invisible from two points.

Definition 1. A body is a finite or countable union of its connected components, where 
each component is an open bounded domain with piecewise smooth boundary.

Definition 2. A body В  C M.d is said to be invisible from, a point О G M.d \ B, if for 
almost all v G Sd~l the billiard particle in M.d \ В  emanating from О with the initial 
velocity v, after a finite number of reflections from ЭВ will eventually move freely with 
the same velocity v along a straight line containing ().

If the point О is infinitely distant, we get the notion of a body invisible in a direction.

Figure 2: A two-dimensional figure invisible from the origin. The 3-dimensional con­
struction is obtained by rotating this figure around the £-axis.

Notice that a 3D body invisible from one point was constructed in [8] (a central cross 
section of this body by a plane passing through the point is shown in Fig. 2). Its interior



is disconnected: it consists two connected components. This provides a difficulty in 
practical realization of this construction. On the contrary, below we construct a body 
with connected interior.

1 Construction

We describe the geometrical shape of the body invisible from one point, provide a 
proof of its invisibility, and then give exact formulas that determine its shape. The 
description is made in several steps.

1. Consider the ellipse £ given by

x 2 u2
b2

1, a >  0 , b >  0

in Cartesian coordinates x, y. The foci of £ are the points Fx =  (—c, 0) and F2 =  (c, 0), 
where с =  \/d2 — b2. Next consider the hyperbola

X 2 II2
— -----— 1, a >  0, j3 >  0.
a 2 p2

We require that the hyperbola has the same foci F\ and F2, that is, the parameters a 
and [3 satisfy the equality _______

C =  \J Q'2 +  /32. (1)

Denote by 73 the right branch of the hyperbola. There are two points of intersection 
of 7i with the ellipse £, which are symmetrical to each other with respect to the ;r-axis; 
we denote by C  the upper point of intersection (see Fig. 3). Let us additionally impose

Figure 3: Ellipse and hyperbola.

the condition that the segments F iF2 and F2C  are perpendicular; one easily sees that 
this condition is equivalent to the equation



It is convenient to introduce the parameter

a c
к  =  — =  —.

c a (2 )

2. Here we prove some auxiliary geometric statements which will be needed later 
on. First state a characteristic property of angle bisector in a triangle.

P rop erty . The segment f  is the bisector of the corresponding angle in Figure 4 
(that is, a =  /3), if and only if (ci\ +  bi)(ci2 — b2) =  / 2•

Figure 4: The characteristic property of the angle bisector.

Sketch of the proof. Consider the following relations on the values oq, a2, 61; b2, 
and / :

1. cii/ci2 =  6i / 62;

2. a i a 2 -  6i62 =  / 2;
3. (ai +  bi)(a2 - b 2) =  f 2. (3)

The equalities 1 and 2 are well known in the literature; each of them is a characteristic 
property of triangle bisector. The equality 3 is a direct consequence of the equalities 1 
and 2; thus the direct property (3) of the angle bisector is established. The proof of the 
inverse property (3) is also simple, but cumbersome, and utilizes the sine rule and some 
trigonometry. It is omitted here. □

P rop os ition . The angles a =  AAF2C and fd =  ABF2C in Figure 3 are equal.

Proof. Let us make an auxiliary construction. Extend the segment BF2 until the 
second intersection with the ellipse at a point A '. Denote by C  the second point of 
intersection of the ellipse with the branch of the hyperbola Ft. Denote

f  =  2 c= \ F 1F2\, g = \ F 2C\ =  \F2C'\, a, =  |F1H/|,

61 =  \F2A!\. a2 =  \FiB\, and b2 =  \F2B\

(see Fig. 5). By the focal property of the ellipse, we have |iqkl/| +  |F2'4'| =  |FiC"| +  
\F2C'\, that is,



Figure 5: Auxiliary construction.

Further, by the focal property of the hyperbola we have \F\B\ — \F2B\ =  \F\C\ — \F2C\,
that is, _______

a2 - b 2 =  s jP  +  g2 -  g. (5)

Multiplying both sides of (4) and (5), we get

(ai +  b\)(a2 — b2) =  / 2,

and taking into account the Property, one concludes that F\F2 is the bisector of the 
angle F\ in the triangle A'FiB. This means that A1 is symmetric to A with respect to 
the straight line F\F2, and by symmetry one has

AAF2C =  £A!F2C . (6)

On the other hand, the angles ABF2C  and AA'F2C' are vertical, and therefore, are 
equal:

ABF2C =  AA'F2C . (7)

The equations (6) and (7) imply that AAF2C =  ABF2C, therefore a =  [3. □

3. Draw a ray with the vertex at F\,

у =  k(x +  c), x >  —c,

with к > 0. The ray intersects the branch В  of the hyperbola, if and only if Л: <  /3/ q:. 
Taking into account the relations (1) and (2) on a and /3, one rewrites this inequality 
as к <  fcmas, where



Suppose that к satisfies (8) and denote by A and В  the points of intersection of the 
ray with £ and B, respectively (see Fig. 3).

In what follows we will also assume that the inequalities

\F!A\ <  1ВД1 <  \F\B\ (9)

are satisfied. Below we derive the condition on к equivalent to (9). Denote A =  (x a , Pa ) 
and В  =  (хв,Ув)', the following relations can be easily derived:

\FiA\ =  - xa +  cl and \F\B\ =  — xb +  ck. (10)
a a

By the second formula in (10), one has \FXB\ > \FiC\ > \FiF2\, and so, the second 
inequality in (9) is always satisfied.

Note that
1З Д 1 =  2c. (11)

The ray with the largest inclination у =  ктах(х+ с ) intersects £ at the point A^ =  (0, b), 
therefore =  V c2 +  b2 =  a. We impose the condition

я  <  2;

then the distance \FiA\ monotonically decreases from |FiC\ =  л /(2c)2 +  bA/a? >  2c to 
|F irtoo| =  a <  2c when A runs the elliptic curve C A^  from C  to A^, and takes the 
value 2c at a single point A0 in between.

Using (11) and the first formula in (10), we conclude that the first inequality in (9) 
is equivalent to (c/cl)xa +  a <  2c, which can be rewritten as

xa < xo =  a ( 2 ----- j  .

Let A0 =  (xo,yo) be the point on the ellipse; then one has

y0 =  сл /х2 -  1л/ 1  -  (2 -  я )2.

We conclude that the first inequality in (9) is equivalent to к > kmin, where

Vo
Xo +  c

V я 2 — ly/l — (2 — я )2 
1 +  2 я  — я 2 (■я

л/4 - { я  -  I )2 
2 — (х  — 1)

(1 2 )

Thus, the condition ensuring that the ray у =  k(x +  c), x > — c intersects both 
£ and %  and that for the points of intersection, A and B, the inequalities (9) are 
satisfied, reads as

к min <  к < кmax*

4. Draw two rays with inclinations k\ and у 
fc2(x +  c), x >  —c, where

kmm < h  < k2 < кmax*

k\(x +  c), x > —c and у =

(13)



The ray у =  k\(x +  c), x > —c is denoted by F\ К in Figure 6. From the previous item 
we know that both rays intersect £ and В  and the inequalities (9) are satisfied, with 
A and В  being the points of intersection of F\K with £ and B.

Determine the figure F{x^  by

(see Fig. 6).

2 2 
я У > 1 x2
a2 b2 a2 /32

Ay < - У <  Ay, У >  0x +  c

Figure 6: A light ray reflecting from the mirrors.

Take a ray F\ I) at an inclination к G (Ay, Ay). Let A and В  be the points of 
intersection of this ray with the elliptic and hyperbolic arcs forming the boundary of 
FM -  Now imagine that the boundary of F x̂yj is mirror-like and there is a flat mirror 
on the line F\F-2 . Then the broken line F 1 AF2BD  represents a light ray emanating 
from F\ and making reflections from these mirror boundaries.

Indeed, according to the focal property of the billiard in ellipse, the light ray from 
Fi, after a reflection at A, gets into F2. The segment F2C  is orthogonal to F iF2 and 
is the bisector of the angle AF2B, as proved in the Proposition. Therefore the light 
ray, after the second reflection at F2, gets into B. According to the focal property of 
the billiard in hyperbola, the light ray reflected at В  moves along the straight line BD  
through Fi.

Now take the angle 7 =  ^arctanAy =  \AKF iF2. The tangent t =  tan 7 satisfies 
the equation

1 -  t2



which implies that

Make the change of variables

t V'fci +  1
h

1

£
(x +  c) +  ty

V T T ¥
cos 7 • (ж +  c) +  sin 7 • y,

- t ( x  +  c) + y
V T T ¥

sin 7 • (x +  c) +  cos 7 • y.

The inverse change of variables has the form

X +  c
V T T ¥ ’

У V T T k2'
The new coordinate system £, rj is orthogonal, its origin £ =  0, 7 =  0 coincides with 
the point Fi =  (—c, 0) (in the x, y-coordinates), and the £-axis (given by the equality 
7 =  0) is the bisector of the angle K F iF2 formed by the lines у =  0 and у =  k\(x +  c). 

In the new coordinates £, 7 the figure F .^ }  takes the following form:

F{W  =  {(£>h) :

(£ -  ty )2
/7/2

(*e +  h)2 ^  .  (£ -  ty)2
/32 a2

(f£ +  h)2
b2

k\ < Ч +  У < h , i f  +  7 >  0 (15)

Let F{£)7?} be symmetric to with respect to the line 7 =  0; then the two­
dimensional figure F{^vj U F{£)7?} is invisible from the origin (see Fig. 2).

Indeed, a light ray emanated from makes the first reflection from the elliptic arc 
bounding F^tVj. The second reflection is from a point on the flat segment bounding 
F{£)7?}, besides the distance from to this point equals \FiF2\. The condition (13) and 
the inequalities (9) ensure that this point really belongs to the flat segment.

The three-dimensional figures G 1 and G2 invisible from the origin are obtained by 
rotating the figure F^>r)y U Fy^vy with respect to the axis 7 =  0 and to the axis f  =  0. 
In the first case (see Fig. 7) the figure G1 is

Gi =  { ( u ,v ,w ) : (u, л/v2 +  w2) G (16)

in the second case the figure G2 is

G2 =  { ( u ,v ,w ) : (Vu2 +  v2, |ie|) G (17)

5. Summarizing, the construction of an invisible body is as follows. Choose the 
parameters c >  0 and 1 <  к  <  2. Calculate km;n and kmax according to the formulas



Figure 7: The 3-dimensional body obtained by rotating the plane figure on Fig. 2 
around the horizontal axis. In order to make the body ’s shape more visible, the exterior 
part of its boundary is removed.

(12) and (8), and choose the parameters k\ and к2 satisfying (13). Define a2, b2, a-2, fi2 
by

2 2 2 /2  /  2 i  \  2 2 - 2  2 ,_>2 / 1  - 2 \  2a =  x  c , b =  (x  — l)c  , a =  x  с , p =  (1 — x  )c ,

and calculate t according to (14). Finally, define the 2D region % * }  by (15), and 
define the regions Gi and G2 in the three-dimensional space of Cartesian coordinates 
u,v,w  by (16) and (17). Each of these regions depends on 4 continuous parameters: 
scale of the picture c, excentricity of the ellipse x , and inclinations of two generating 
lines, k\ and k2.
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