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IN V E R SE  PR O B L E M S F O R  E Q U A TIO N S W IT H  A  M E M O R Y
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A bstract Integro-differential equations of the electrodynamics with dispersion and 
viscoelasticity equations are considered in this paper. These equations differ from the 
usual equations of electrodynamics and elasticity by convolutions terms which lead to 
a dependence of solutions to these equations on a prehistory of a process. Hence, they 
have a special type of "memory". Then some new inverse problems occur. Along with 
parameters of a medium we need recover kernels of integral operators. Below we give 
a review of some results for inverse problems in this direction.
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1 Introduction
We consider equations of the electrodynamics and elasticity which contain integral 
convolution terms. Such type of equations describes in the electrodynamics processes 
with a dispersion while in the elasticity it describes an influence of a viscosity of a 
material. In both cases kernels of integral operators entering into the equations are 
usually unknown. The propagation of electromagnetic and elastic waves depends on 
these kernels. Thus, we come to the necessity of a consideration of some inverse prob­
lems related with the integro-differential equations. Since parameters of a medium 
(or coefficients of differential equations) are often also unknown, the inverse problems 
usually consist in a determination of some functions. A  part of these functions depends 
on spatial variables only, while an other can depend on the time variable also.

Below we give a review of some results related to inverse problems for the electrody­
namics and elasticity equations with "memory". In the next section we consider some 
statements of inverse problems for equations of the electrodynamics with a convolution 
term. They based on the author’s papers [17, 18, 19, 25]. The typical inverse prob­
lem studied here consists in the following. The electric permeability e0(x) is a given 
constant anywhere outside of a compact domain Q with a smooth boundary dQ and 
unknown inside Q, a kernel e(x,t)  is represented in the form e(x,t)  =  p(x)k(t),  where 
k(t) is a known function, while p(x) is an unknown one, and support of it is contained 
in Q. The unknown functions should be recovered from the trace of a solution to the 
Cauchy problem for the integro-differential electromagnetic equations given on dQ for 
a finite time interval [0, T ]. We give algorithms for solving these problems and stability 
estimates for the solutions.



In section 3 we consider two- and three-dimensional inverse problems for viscoelas­
ticity equations. In general, these equations contain 3 medium parameters, density 

x) and 2 Lame moduli A(x) and r (x ), and two kernels p(x,t) and q(x,t). In the two­
dimensional case only 3 functions, namely, p(x), p(x)  and p(x,t) enter in the equation. 
We consider a posing of a two-dimensional inverse problem with many observations 
in which a solution to the Cauchy problem with initial zero data depends on a pa­
rameter y that is a point of a concentrated force application belonging dQ. Then we 
assume that the functions p(x), y(x)  are unknown inside Q and are given positive 
constants outside of this domain. The function p(x, t) is supposed to be represented 
as p(x,t) =  p0 (x)k(t), where k(t) is given, while the support of p0(x) lies in Q and 
p0(x) is unknown. We demonstrate that all three unknown functions can be uniquely 
found from the solutions to the direct problems given for all (x, y) G (dQ x dQ) and for 
a finite time interval [0,T]. We also study a two-dimensional inverse problem with a 
single observation where a source is fixed. In the latter case p(x) and y(x)  are suppose 
be given anywhere. For the three-dimensional case, we consider the inverse problem 
assuming that density p(x) is given, and that p(x), A(x), y(x)  and p(x,t) ,  g(x,t)  are in­
finitely differentiable functions of its variables. In the setting with many observations 
we proof that the functions A(x), y(x)  as well as dnp(x,t)/dt|t=0, dnq(x,t)/dtn|t=0, 
n =  0 ,1 ,2 ,..., are uniquely determine in Q by the displacements vector given for all 
(x,y) G (dQ x dQ) and for a finite time interval [0,T].

In the Section 4, for a reader’s convenience, we derive sufficient conditions of non- 
positivety of the Riemannian conformal metric. These conditions are used in Sections 
2 and 3. Moreover, we also derive a sufficient condition for a boundary of a compact 
domain be a convex with respect to geodesics of the Riemannian metric.

1 Inverse problems for the dispersion electrodynamic 
equations

The propagation of electromagnetic waves in dispersion media is described by the 
equations

where

dD
~dt

rotH(x, t) +  j (x,  t) =  0,

d
y ( x ) — H(x,  t) +  rotE(x, t) 

dt
0 (x, t) G R4, (2.1)

t

D =  e0 ( x ) E ( x , t ) +  e(x, t  — s)E(x,s)  ds.

In these equations, e0(x) is the dielectric permeability of the medium and the coefficient 
e(x,t)  characterizes the medium dispersion. The convolution k * E  corresponds to a 
certain “memory” of the medium. In what follows, we consider the system of equations 
(2.1) under the zero initial conditions

( E , H  )t< 0 =  0, (2.2)



We assume that the function e0(x) > e00 > 0 is a positive and e(x, t) can be represented 
in the form

e(x, t) =  k(t)p(x),

where k(0) =  1 and k(t) is a known function. Suppose that the supports of the functions 
e0(x ) — 1 and p(x) are contained in a compact open domain Q G R3 with smooth 
boundary dQ. We are interested in determining a pair of functions e0(x ) and p(x) 
from a certain information about the solution of problem (2.1), (2.2). We give an exact 
setting of this inverse problem a little latter. Suppose that the Riemannian metric 
dr =  e,!/2(x ) |dx|, |dx| =  (dx\ +  dx2, +  dx^)1/2, has non-positive curvature in Q. A 
sufficient condition for this is the inequality

d2 ln e0(x )У
ij= 1 dxidxi

-WVj > 0, V : v = ( v i , V 2 , V3 ) =  0, x G Q.

Suppose that, in addition, the domain Q is convex with respect to geodesics (see the 
section 4, where the both a sufficient condition on non-positivity and a convexity 
condition are given). Under these conditions, the metric is simple in the closed domain 
Q; i.e., any two points x and y in Q can be joined by a unique geodesic. We denote the 
geodesic line joining points x and y by r (x ,y ) and its Riemannian length by т(x,y).

Below we consider two different posing of the inverse problems. First of them is 
related with many observations, while the other one with a single observation.

2.1 An inverse problem with many observations
We assume herewith that exterior current having the form of a moment dipole con­
centrated at a point y G dQ and having direction j 0 (y); i.e., j  =  j 0 (y)6 (x — y,t). We 
also assume that j 0 (y) =  0 and lies in the tangent direction to Q at y G dQ. Consider 
the following inverse problem. Let n >  0 be an arbitrary number. Suppose that the 
function H(x, t ,y )  is given for all (x,y) G (dQ x dQ) and all t < т(x,y)  +  n, i.e.,

H ( x , t , y ) =  f  ( x , t , y ), ( x , y ) G (dQ x д Q), t < т(x,y ) +  n. (2.3)
It is required to determine e0(x) and p(x) in Q from the function f  (x,t,y).

Below, following [19], we give some arguments which reduce this problem to simpler 
problems to be solved successively. In the case where e0(x) =  1, e(x, t) =  0 the solution 
of problem (2.1), (2.2) has the form

0
H (x,t) =  rot j

4n|x — y| 6(t — |x — y |)

j0 v v Г 1
5'(t — |x — y |) +  i-------- - 5(t — |x — y |)

4n|x — y| L |x — у 1

E ix ’ t) = — I 5{t — |x — y |)
4n|x — y|

±  I V (V • j  0) — j 0  Л' (t — lx —
4п l |x — y|
, 3v(v • j 0 ) — j 0

+  Vdiv
j 0

6 0 (t — |x — y |)4n|x — y|
0 3v(v ■ j0) — j0

6 '(t — |x — y |) +  -----:-------- 5(t — |x — y |)
|x — y |2

|x — y |3
6 0 (t — |x — y |) (2.4)



where v =  (x — y)/|x — y| and 6 0 (t) is the Heaviside function. In what follows, we 
assume that the point y G dQ is a variable parameter of the problem.

Lem m a 2.1. If the functions e0(x) and e(x,t)  satisfy the assumptions made above and 
are sufficiently smooth (say, of class C ^(Q  x R )), then, for small n >  0, the solution 
of problem (2 .1), (2 .2 )  can be represented in a form similar to (2 .4 ) ;  namely,

H (x , t ,y ) =  a n  ( x ,y ) 6  (t — т (x ,y ) ) +  Pn  ( x ,y )6(t — т (x ,y )) +  H ( x , t , y ) ,
E (x , t , y ) =  a E ( x ,y)6'(t — т (x ,y ) ) +  Pe ( x , y )6(t — т (x ,y )) +  E ( x , t , y ),

t < т(x ,y ) +  n. (2.5)

Here, a n (x,y),  pn (x,y) and a E (x,y),  pE (x,y) are solutions of the equations

(2Ут(x, y) • V  +  Ат(x, y) +  e0 (x)p(x))an (x, y) — V e 0 (x) x a E (x,y) =  0,
(2Чт(x, y) • V  +  Ат(x, y) +  e0 (x)p(x))Pn (x, y) — A a n (x, y)
+k '(0 )e0 (x)p(x)an (x,y) — Vp(x) x a E (x,y) — V e 0 (x) x Pe (x ,y)  =  0,

(2.6)

e0 (x)aE(x, y) +  Vт(x, y) x an(x,  y) =  0,
e0 (x)PE(x,y) +  e0 (x)p(x)aE(x,y) +  Vт(x,y) x Pn(x,y)

—rotan (x,y) =  0, (2.7)

and satisfy the limit conditions

T Г f  ̂ , M j 0 (y ) x v(y )lim[an рс, У)т (x ,y)] = ------- ---------- ,xyy 4n

Иш[Pn(x,y )T(x,y)] =  j  (y') 4 ’< v (У , (2.8)x yy 4n

as x tends to y along the geodesic r ( x , y ) ;  here, v(y) is the unit tangent vector to 
r (x ,y )  at the point y. The functions H(x, t ,y )  and E(x , t ,y )  are certain functions of 
the variables (x, t) which are regular at x =  y and, moreover, satisfy the conditions 
H(x, t,y) =  0 and E(x, t,y)  = 0  for all t < т( x ,y ) .

Below we briefly outline the proof of this lemma. It is convenient to construct a 
second order equation for function H(x, t ,y )  and consider the system of this second 
order equation for H(x, t ,y )  and a first order equation for E(x, t ,y) .  Substituting 
representation (2.5) into this system, we find relations (2.6) and (2.7). By virtue of the 
assumptions made above, in some neighborhood of y G dQ , we have e0 (x) =  1 and 
p(x) =  0. Therefore, for each fixed point y G dQ, formula (2.4) uniquely determines the 
values of the functions a n (x,y),  pn (x,y)  and aE(x,y),  pE(x,y)  in some neighborhood 
of this point. This implies the limit relations (2.8). As a result, the values of the 
functions a n (x, y) and pn (x, y) inside Q are constructed, after eliminating a E(x,y)  and 
PE(x,y)  from Eqs. (2.6) by using algebraic relations (2.7), along geodesics as solutions 
of ordinary differential equations, after which the functions a E(x,y)  and pE(x,y)  are 
found in explicit form. The system of equations for H(x, t ,y) ,  E(x, t ,y) ,  which results



from substituting representation (2.5), makes it possible to prove the regularity of these 
functions. It follows from (2.5) that

f  (x, t, У) =  an (x, y )6'(t — т(x, У))
+f in(x, y )6(t — т(x, У)) +  f (x ,  t, У) . (2.9)

Here, f  (x, t ,y)  is the regular part of the function f  (x,t,y).  Note that a n (x,y) =  0 
for all (x,y) G (dQ x dQ) and x =  y (see the corollary of Lemma 2.2 stated below). 
Let x G dQ and y G dQ be fix points. Consider the function f  (x, t ,y)  as a function 
of the variable t. This function identically vanishes at t < т(x,y)  and has nonzero 
singular part at a t =  т(x,y),  because a n (x,y) =  0. Therefore, т(x,y) =  вир{т}, 
{т} =  {т G R| u(x, t, y) =  0, if t < т}. Note that

an (x,y)

t

lim
t y r  (x,y)+0

s ) f  ( x , s , y ) ds, (x, y) G (dQ x dQ). (2.10)

Thus, the inverse problem stated above can be reformulated as follows: determine e0(x) 
and p(x) inside Q from functions т(x,y)  and a n (x,y)  given for all (x,y) G (dQ x dQ). 
This problem, in turn, reduces to the following two problems to be solved successively.

Problem 2.1. Determine e0(x) inside Q from a function т(x,y)  given for any pair 
of points x ,y  belonging to dQ.

Problem 2.2. For a known function e0(x), determine p(x)  inside Q from a function 
a n (x,y)  given at (x,y) G (dQ x dQ).

Problem 2.1 is called the inverse kinematic problem and has been well studied (see, 
e.g., books [15, 16]). The stability of its solution was estimated in the case of a two­
dimensional space by R. Mukhometov in [12] and in the case of a higher dimensional 
space, in [5, 6, 13]. Here, we consider Problem 2.2.

Lem m a 2.2. The function |an (x,y)l has the expression

lan (x ,y )l
|j0(y) x v (y )^ /d et(§ )

4пт(x, y)
exp

2
p (C) dr

Г(х,у)

1 (2.11)

in which (  =  (Zi , ( 2, ( 3) =  v (у)т(x,y) is the vector of Riemann coordinates of the point 
x and det(|X) is the Jacobian of the transition from the Riemann coordinates to the 
Cartesian ones.

The proof of this lemma is fairly simple; we give it here, because formula (2.11) 
plays the fundamental role in the problem under consideration. Equalities (2.6) and 
(7) imply a differential equation for the function an . It has the form

(2Vт(x, y) • V  +  Ат(x, y) +  e0 (x)p(x))an(x,  y)
+ V  lne0 (x) x ( V т(x,y) x an (x,y))  =  0. (2.12)

This equation readily implies a n (x,y) • Vт(x,y) =  0. As is well known, the principal 
singularities of the vectors H  and E  are oriented in tangent directions to the front of



the electromagnetic wave propagation. Using this fact and taking the inner products 
of both sides equality (2.12) and an (x,y),  we obtain an equation for |an (x,y)l 2 of the 
form

Vт(x,y) ■ V|a n (x,y)l 2 +  (Ат(x,y) +  e0 (x)p(x) 
—Vт(x,y) ■ V  lne0 (x)) lan(x,y)l 2 =  0.

Using formula (2.2.35) in [16] with a j  =  /e0 (x), we obtain

Ат(x,y) — Vт(x,y) ■ V  ln e0(x) e0 (x)
- 2

-т(x,y )
—  ln det 
dт

dz
dx

(2.13)

in which dT denotes differentiation along the geodesic r(x,y) .  Observing that Vт(x,y) ■ 
V  =  e0 (x)dT , we find

d  j  \an (x,y )l2 т2 (x ,y )
ЛЛ  det (S

exp j  p (£) dH  = 0.
Г(х,у)

(2.14)

Using the limit equality (2.8) for the function a n (x,y),  we obtain formula (2.11). 

Corollary 2.1. For all (x,y) G dQ x dQ such that x =  y, a n (x,y) =  0.

Formula (2.11) implies the relation

/  v £ )  dr = — 2 ln 4 пт{x' yXan ^  =  g(x,y),
Г(х,у) 1- 0(у) x v(y)K /det(§ X )

(x, y) G (dQ x  dQ), (2.15)

which reduces Problem 2.2 under consideration to an integral geometry problem studied 
in [5, 6, 12, 14]. Below, we give a result related to the stability of its solution, following 
[16]. Suppose that a function x =  x(C) implements an one to one mapping of class C 2 
from the unit sphere S2 centered at the origin to dQ so that the positive orientation 
of dQ corresponds to the positive orientation of S2. Suppose also that в and p are the 
spherical angles of the point £ G S2 and Y =  [0,n] x [0, 2n] is the range of variation of 
the variables в and p. Finally, suppose that points x G dQ and y G dQ are mapped 
to points £(в1, р 1) and £(в2 , р 2) , respectively. Then x =  х(£(в1 , Р 1)) =  x ( e1, p 1) and
У =  Х(£(в2 , Р2 )) =  У(в2 , Р2 ) . We set g (x(e 1 , p 1 ) , y (e2 , P2 )) =  д (в1 , Р 1 ,в2 , P2 ) . Then 
relation (2.15) can be written in the form

J  p (£ ) ^  =  д (в 1, Р 1 , в 2 , p 2 ) ,

Г(х(в-1,^1),у(в2,^2 ))

(в 1 , Р 1 ) G Y , (в 2 , р 2 ) G Y . (2.16)

We also set т(x (e 1 , р 1) , у (в 2 , p 2)) =  т(в 1, p 1, в 2 , p 2), by I (g, f )  we denote the determi­
nant

I ( f ,  f )  =  det
0 f e-i g <p1

g d2 "Гв1в2 Wl02
g <f2 f diV2 W l̂ 2



Theorem  2.1. If dQ G C 2, e0(x) G C 2(Q U dQ), p(x) G C 1(Q U dQ) and the family of 
geodesics is simple in Q, then the stability of the solution is estimated as

J  p2 (x)e^/2 (x) dx < ——  J  I  ( f , f )  de1dp1de2 dp2 . (2.17)
П TxT

2.2 An inverse problem with a single observation

As the exterior current j (x ,  t) we take the function j  =  j 0 5(t)5(x1 ) with j 0 =  (0, 0,1) =  
e3 and the Dirac-function 5(t). Henceforth ek for k =  1, 2, 3 stands for the unit vector 
along the axis x k. Suppose that the plane x 1 =  0, on which the function 5(x1 ) is 
localized, lies outside the closure of Q. Assume for definiteness that Q lies in the half­
space R  =  { x | x 1 > d} for some d >  0. Seeking some technical simplifications in 
studying the inverse problem, we assume also that e0(x) =  1 outside R  

Introduce a function т(x) as the solution to the Cauchy problem

^т (x)l2 =  e0 (x); т |xi=0 =  0. (2.18)

Consider some cylindrical domain G =  G(T ) =  {(x,t)l x G Q/т(x) < t < T  +  т(x)}, 
where T  is some positive number. Denote by S =  S(T) =  { (x, t )  G (dQ x R )| т(x) < 
t < T  +  т(x)} its lateral surface, and by ^ =  E(T ), its lower base E(T ) =  {(x,t)l x G 
Q,t =  т (x) +  0}.

The arguments of Lemma 2.3 (see below) imply that under certain assumptions on 
the coefficients of (2.1) we can express the functions E(x, t )  and H(x,t ) ,  which consti­
tute a solution to (2.1), (2.2), as the sums of 2 certain singular functions supported on 
the characteristic surface t =  т(x) and regular functions E(x, t )  and H(x, t )  supported 
on {(x,t)l t > т(x )}; namely,

E (x,t) =  aE (x)S(t — т (x)) +  E(x,t ) ,  H (x,t) =  an (x)S(t — т (x)) +  H(x,t) .

We assume here that e0 (x) is known function anywhere. In order to find p(x) on Q, we 
assume that for the solution to (2.1), (2.2) we know on S the values of the magnetic 
field H  and its normal derivative, as well as the coefficient of the singular part of 
H(x, t):

H ls  =  g (x,t),
dH
dn s

h(x,t), a n bn a n (x) . (2.19)

Problem 2.3. Given the functions g(x,t)  and h(x,t),  and a'n (x), we are required to 
find p(x)  on Q.

For fixed numbers q0 >  0 and d >  0 denote by Л(д0, d) the set of functions (e0, k,p) 
satisfying the following conditions:

(1) suppp(x)  c  Q, supp (e0(x) — 1) C Q,
(2) IIp IIc8(r3) < qo, Ile0 — 1 1|cio(r3) < q0 and \\k — ^Ic 4̂ -^) < q0 .
The solution to the direct problem satisfies



Lem m a 2.3. For every T0 >  0 there is a positive number q0g =  qig(T0 ) such that for 
every (e0 ,k,p) G Л^ 0 ^ ) ,  q0 < q0g, we can express the solution ( E , H ) to (2.1)-(2.2) in 
the domain

K(T 0) =  {(x,t)l т(x) < T0 , 0 < t < T0 — т(x)} 
as

E (x,t) =  aE (x)S(t — т (x)) +  (x)e0(t — т (x))
+Ye (x ) e 1 (t — т(x) +  E(x,  t),

H (x,t) =  a H (x)S(t — т (x)) +  вн (x)e0(t — т (x))
+Yh (x)e 1 (t — т (x) +  H (x,t),  (2.20)

where 5(t) is the Dirac delta-function and e0 (t) is the Heaviside function: e0 (t) =  1 for 
t >  0 and e0 (t) =  0 for t <  0, while e 1 (t) =  t e 0 (t). The coefficients aE, вЕ, YE and 
aH, вН, YH are smooth functions of the spatial variable x. Furthermore,

aE G C 8 (D(T0 )), ан G C 8 ( D + T )  U D - (T)) ,
вЕ G C 6 (D(T0 )), вн G C 6 (D+(T0 ) U D - (T0 )),
Ye G C 4 (D(T0 )), Yh G C 4 (D+(T0 ) U D - T ) ) ,

D ( T )  =  { x 1т (x) < T0 }, D + ( T )  =  D ( T )  П {xl x 1 >  0},
D - (T0 ) =  D ( T )  П {xl x'1 <  0},

while the functions E(x, t )  and H(x, t )  along with their partial derivatives with respect 
to t are of class H 3(S(T0, t0)), T.(T0 , t0) =  K(T0) П { (x, t)11 =  t0}, t0 G (0,T0], and 
vanish identically for t < т(x,). Moreover, there exists a positive constant C such that 
for all q0 < q0g we have

laE(x) — a°E(x)| < Cq0 , leE(x)| < Cq0 , Iy e (x)| < Cq0 , x G D ( T) ,
lE(x,t)l < Cq0 , lEt(x,t)l < Cq0 , (x,t) G K(T 0 ), (2.21)

1ан(x) — а°н(x )| < Cq0 , 1вн(x)| < Cq0 , Iyh(x)| < Cq0 , x G D(T0 ),
lH(x , t ) l<  Cq0 , lHt(x, t ) l< Cq0 , (x,t) G K(T 0 ). (2.22)

Here, a°E(x) =  —e 3 /2 and a°H(x) =  (e 2 /2)sign(x1 ).

The main result here is the following theorem on the stability of the solution to the 
inverse problem 2.3.

Theorem  2.2. Suppose that (e0 ,k ,rpi) G Л^ 0 ^ ) ,  i =  1,2, while gl(x,t),  hl(x,t) and 
агн |Sn(x) constitute the Cauchy data corresponding to the solution to (2.1), (2.2) for 
p =  pi(x). In addition, suppose that Q lies in a Riemannian ball of radius p and

T > 4p. (2.23)

Then there are positive numbers q0g and C such that for all q0 < q0g we have

\\p1 — p2 \H1(n) < C (\\gt — gt IIh1(s) +  \\ht — ht IIl2(S)

+  lla H — aH IlH2 (on) +  \\вН — вН\H2(s n ^ . (2.24)

Here вН(x) =  gi(x, т(x) +  0), i =  1, 2.



Theorem 2.2 implies the uniqueness theorem

Theorem  2.3. In the hypotheses of Theorem 2.2, suppose that the Cauchy data cor­
responding to two solutions to (2 .1 ), (2 .2 )  for p =  pi, i =  1 , 2 , coincide: g 1 =  g2, 
h1 =  h2, and aH|dn =  a 2H|dn. Then there is a positive number q0g such that for q0 < q0 
we have p 1 (x) =  p2 (x) in Q.

Proofs of the Lemma 2.3 and Theorem 2.2 are given in [19].

3 Inverse problems for the viscoelasticity equations
Wave propagation in modern composite materials is described by the integrodifferential 
equation

p(x) utt — Lu =  F, (3.1)

where u =  (u1 ,u2 ,u3) is the elastic displacement vector, p(x) is the density of the 
medium, x G R3, F =  (F1 ,F2, F3) is the force vector, and the operator L =  (L1, L2 ,L3,) 
is defined by the equalities

Liu = E  j . i = !• 2 ,3,
j = 1 j

, . . , Эщ(x,t) du3 (x,t)
aij(u) =  X(x)8 ijdivu(x,t) +  ^(x) ( — ------ - +

dx 3 dxi

+ p(x, t — s)5ij divu(x, s) +  q(x, t — s)
dui(x,s) duj (x,s)

d x j
+ ds,

dxi

i , j  =  1, 2, 3.

In these equalities 5ij is the Kronecker symbol, while \(x) and ^(x)  are the elasticity 
moduli, and the functions p(x,t)  and q(x,t)  characterize the viscosity of the medium. 
In what follows, we assume that X(x) +  y(x)  >  0, ^(x) >  0 and p(x) >  0.

Let

-< ->  =  . . и .  ( gf
be the speeds of the longitudinal and transverse waves respectively and let тр(x , y) and 
^(x^y)  be the geodesic distance corresponding the Riemannian metrics

dтn
ldxl

Cp(x)'
dz.

ldxl 
C. (x) '

ldxl =  dx2 +  dx2 +  dx 2 .3 .

t

Suppose that both Riemannian metrics are simple, i.e., that every pair of points x and 
y can be joined by a unique geodesic r p(x,y)  and r s(x,y).  In what follows, we will 
be interested in the problem of determining the functions p(x), X(x), y(x),  p(x,t)  and



q(x, t) from a given information about the family o f solutions to some direct problems 
for (3.1). The inverse problems o f determining the kernels p(x,t)  and q(x,t) in (3.1) 
(or only the kernel p(x,t)  in the case when the system of equalities is replaced by a 
single scalar equation) under the assumption that p(x,t)  and q(x,t)  are representable 
in the forms p(x,t)  =  k1 (t)p0 (x) and q(x,t) =  k2 (t)q0 (x) , where k1 (t) and k2 (t) are 
given functions, while p0 (x) and q0 (x) are unknown functions whose support lies in 
some com pact domain were studied earlier in [8, 10, 28]. For the first time a two­
dimensional inverse problem of recovering kernel p(x, t) of the forms p(x, t) =  k1 (t)p0 (x) 
under the assumption p =  1 was considered in [8]. In this paper, it was assumed that 
two solutions of the Cauchy problem related to a scalar equation, that corresponding 
2D case, with two different and nonzero initial data were known on boundary o f a 
com pact domain for a sufficiently large time interval [0 ,T ]. The Holder type stability 
estimate was found for this inverse problem. The similar inverse problem with a single 
observation was studied in [28]. In [10] stability estimates were found for a solution 
to the inverse problem of determining two kernels in the system of elasticity equations 
with the known density and elasticity modulus. In these cited above tree papers the 
m ethod of Carleman estimates, introduced for inverse problems by A. Bukhgeim and 
M. Klibanov [9], was used. Unfortunately, an inverse problem with nonzero initial data 
can not be use in practical applications because if we can not produce measurements 
inside a medium, we do not able measure and nonzero initial data. To avoid this, we 
consider below equations (3.1) with zero initial date:

ult < 0 =  0 (3.2)

and study some inverse problems for equations (3.1), (3.2) in 2D and 3D cases with 
many or single obsevations following [20, 21, 22, 23, 24, 26].

3.1 2D inverse problems
Consider the equation

Lu =  p (x ) utt(x , t ) — div ^ (x ) V u (x , t ) +  p (x, t  — s ) V u (x , s ) ds

t

F (x , t ) (3.3)

for the function u =  u (x , t ) ,  x =  (x 1 , x 2 ) ,  (x , t ) G R 3. The function p (x , t ) characterizes 
the viscosity of the medium, and the integral operator describes the influence of the 
prehistory on the process of propagation of elastic waves which is caused by an applied 
given force F (x , t ) .  Equation (3.3) appears in the theory o f viscoelastic bodies whose 
properties do not depend on x 3 . Then the third component of the displacement vector 
u3 =  u (x , t ) satisfies to equation (3.3). Suppose that the u (x , t ) is a solution to (3.3) 
satisfying the initial condition

u l t<0 =  0  x  G r 2. (3.4)

Given p (x ) ,  y (x ) ,  p (x , t ) and F (x , t ) , problem (3.3), (3.4) of determining u (x , t ) is well 
posed in suitable function spaces. Call it the direct problem.  In what follows, we will



be interested in the inverse problem of determining p(x), p,(x) and p(x,t)  from a given 
information about the family of solutions to direct problems. Assume that p(x,t)  has 
a special structure; namely, p(x,t)  is representable as the product of two functions

p(x,t)  =  k(t)p0 (x), (3.5)

in which k(t) G C 2[0, ro) is defined and satisfies the equation k(0) =  1, whereas p0 (x) 
is unknown. Furthermore, assume that p(x) and p,(x) are positive everywhere in R2 
and different from given positive constants p0 and ц0 respectively only inside the unit 
disk D =  {x  G R2||x| < 1}. More exactly, assume that

supp((p(x) — P0 ), (ft(x) — ^0 ),p0 (x)) C D. (3.6)

In the sequel, we will also make some assumptions about the smoothness of p(x), p,(x) 
and p0 (x) as well as the regularity of the field of geodesics connected with (3.3).

3.1.1 A n inverse problem  with m any observations

Let F(x, t )  have the form

F(x, t )  =  S(x ■ v (ф) — 1)S(t), v (ф) =  (cos ф, sin ф), ф G [0, 2n\, (3.7)

where 5(t) is the Dirac delta-function and ф is a variable parameter of the problem. In 
this case we denote the solution to the direct problem (3.3), (3.4), (3.7) by u(x,t,ip). 
Denote the boundary of the unit disk D  by dD =  {x  G R2| |x| =  1} and put

д+D =  {x  G dDl x ■ v (ф) >  0}, d- D =  {x  G dDl x ■ v (ф) <  0}.

Inverse problem 3.1. Suppose that, for a sufficiently large number T >  0 (see (3.12) 
below) u(x,t,%ф) is known for all (x,t,%ф) G B ( T ) =  {x  G д- D, t  G [0,T],ф G [0, 2n}}:

u(x , t^ ) =  f (x,t,ф), (x,t,ф) G B ( T) . (3.8)

Given f  (x/t/ф), find p(x), p,(x) and p0 (x) in D.
Denote by c(x) =  cs(x) =  p,(x)/p0 (x) the propagation speed for shear waves. Let 

т(x/ф) be the solution to the Cauchy problem

\ ^ х т (x^ ф
1

c2 (x) ’ т\xw(p) =  1   ^ (3.9)

i.e., т(x/ф) is the distance between a point x and the straight line £ ■ v (ф) =  1 on the 
plane of the variables (£1,£2) =  £ in the Riemannian metric dт =  л /(d£2 +  d£2)/c(£). 
Suppose that the metric is simple in D. Denote by Q(m, M ) the set of the functions 
(p(x), y (x) ,p 0 (x)) satisfying the following conditions for fixed positive m, M :

1) 0 < m < p(x) < M , 0 < m < ц (x) <  M  for all x G R2,
2) supp (p(x) — p0 ,ft(x) — Ц0 ,p0 (x)) C D,
3) p(x) G C 4(D), v(x)  G C 4 (D), p0 (x) G C 2 (D).



The equation t =  тф,ф) defines the front of a wave propagating from the source 
given by (3.7). In a neighborhood of this front, the solution to (3.3), (3.4), (3.7) has 
the form

у,фф,ф) =  Аф,ф)в0ф — т ф,ф))
+B(x,  ф)в1ф — т(x, ф)) +  уфф,ф),  (3.10)

where 90 (t) is the Heaviside function, the function Q1 (t) is defined by the equality 
91 (t) =  te0 (t) , and уфф,ф)  is an infinitesimal of higher order than (t — тф,ф)) 
and уфф,ф)  vanishes for t < тф,ф). In whole, the fact is known for hyperbolic 
equations; in application to the specific problem, it was used and established in [20, 23] 
for p(x) =  1. For getting relations for determining A,B,  and уфф,ф),  we must insert 
(3.10) in (3.3) and equate to zero the coefficients at 5'(t — тф,ф)) and 5(t — тф,ф)). 
Here we have used (3.10) to reduce the initial inverse problem to another problem. As 
a consequence of (3.10) the function f  фф,ф),  defined in the inverse problem, admits 
the representation

f  фф,ф) =  A(x, ф)0 0 ф — т ф,ф))
+B(x,ф)вl ( t  — т ф,ф))  +  f  фф,ф),  (3.11)

in which f  (x, t, ф) is an infinitesimal of a higher order than (t — т(x, ф)) and f  (x, t, ф) 
vanishes for t < тф,ф). Suppose that

T >  sup sup тф,ф). (3.12)
фе[0,2п\ xed-D

Then f  фф,ф)  defines тф,ф), Аф,ф)  and B ф,ф)  uniquely for all x G d- D  and 
ф G [0, 2п]. The formulas for their calculation look as

тф ,ф) =  ^ { т}, {т} =  {т G R | f  фф^ф =  ^  if t < т} ,
А Ф ,Ф) =  Ит f  Ф , t ,Ф), B Ф ,Ф) =  Ит ФФФ,Ф) . (3.13)t^T (х,ф) + 0  t—ут (x, )̂+0

In this connection, we can consider the reduced statement of the inverse problem: The 
functions тф,ф), Аф,ф)  and B ( x ^ )  are known for all ф,ф) G Y =: {ф,ф)\x G 
д- D,ф G [0, 2n]}; find p(x), цф)  and p0 (x) in D. Below, we will see that this problem 
decomposes into the three consecutively solved problems:

(1) find c(x) =  ф цф )/рф ) from тф,ф),
(2) given c(x) and Аф,ф),  find p(x) =  p0 (x)/цф);
(3) given c(x), p(x) and Аф,ф),  B ( x ^ ) ,  find p(x).
The first problem is the familiar inverse kinematic seismic problem. Two other 

problems lead to a linear problem of integral geometry on the family of geodesics of 
the Riemannian metric dт =  \dx\/c(x). Moreover, for determining p(x) in D  in the 
third problem the necessity appears of solving a boundary value problem for some 
second-order linear equation of elliptic type with Cauchy data on dD. A solution to 
each of these problems is unique (see below). This implies the uniqueness theorem:

Theorem  3.1. Suppose that (pk,ц0к,pk) G Q(m, M ) and f k(x,t,ф)are the data (3.8) 
corresponding to solutions to (3.3), (3.4) for p =  pk, ц =  Цк, p =  p0k, k =  1 ,2 , and 
condition (3.12) is fulfilled. If, moreover, ^ ф ф , ф )  =  f 2 фф, ф); then p1 (x) =  p2 (x), 
ц 1(x ) =  ц2 ф) and p0 1 (x) =  rp0 2 (x) for all x G D.



Below following [24], we give some formulas for finding the amplitude coefficients 
А ^ , ф )  and B(x,ip). Basing on these formulas, we justify the decomposition of the 
initial problem into the above three simpler problems and give stability estimates for a 
solution to the inverse kinematic problem and the problem of integral geometry from 
which the uniqueness theorems for solutions to the corresponding problems follow as 
easy consequences. In fact, the contents of this subsection defines an algorithmic 
procedure for constructing the solution to the initial inverse problem.

1. At first, we give formulas for finding А ^ , ф )  and B(x,ip). The assumptions 
about the coefficients of (3.3) imply that, for every triple of the functions p(x), ц (x) 
and p0 (x), there exists d G (0, 1) such that, in D d =  {x  G D\ |x | >  1 — d}, the coefficients 
are constant: p(x) =  p0 , ц(x ) =  ц0 , p0 (x) =  0. Let Gd =  {x  G R2| x ■ v (ф) > 1 — d}. 
Then (see [24])

А ^ , ф )  =  А0 =: c0

2 ц0
B(x, ф) =  0, x G Gd.

Moreover, in G =  {x  G R2| x ■ v (ф) <  1} formula for А ^ , ф )  has the form 

А ^ , ф )  =  exp (a(x)),

a(x,^ ) =  2 p(£) — div (с2 (£ )чт(£,ф)) dт, x G G, (3.14)
Г(х,ф)

where r(x,ip) is the geodesic passing on the plane of £1,£2 through a point x and 
orthogonal to the straight line £ ■ v (ф) =  1, while dт is the element of the Riemannian 
length. Here А ^ , ф )  G C 2 (D) for every fixed ф G [0, 2п ]. Moreover, А^/ф)  is positive 
everywhere. The function B (x,ф) is calculated in G by the formula

2  A(x,ф) C (£,ф)) +  h(£) dт.
Г(х,ф)

(3.15)

where

C(x, ф) =  p(x) [p(x) — div{ ^ ^ У Ч т (x, ф)) — k’ (0 )]
+div[c2 (x)p ̂ рЧт (x,ip)] — div[c2 (x)Чa(x,фУ]

—c2 (x)|Чa(x,ф)|2, (3.16)
h(x) =  div[c2(x)Vq(x)] +  c2 (x)\4 q(x)\2

=  div[c2 ( x ) 4  ( ^  p ( x ) ) ] / p ( x ) . (3.17)

and q(x) =  ln^/p(x).
2. Decomposition of the Initial Inverse Problem.
The formulas given above and (3.9) imply the decomposition of the initial inverse 

Problem 3.1 into three separate problems to be solved consecutively. Write down their 
more detailed statements.

Problem 3.1.1. Find c(x) =  л/ц(x)/p(x) inside D  from т(x,tp), (x,tp) G Y, Y =:  
{(x,ф)| x G д- D,ф G [0,2n]}. The function т(x /ф) is a solution to (3.9). This



problem is nonlinear. The stability estimate to the problem given below, imply the 
unique solution. Let (pk,цк,p0k) G Q ( m , M ), k =  1, 2. Denote ck(x) =  л/цк(x)/pk(x) , 
k =  1 , 2 , and introduce

c(x) =  c1 (x) — c2 (x), т^^ф) =  ^(x ,  ф) — т2 (x, ф).

Then [24]:

|IcIIl2(d) — C Ilт l|н1(r), (3.18)

where C =  C(m, M)  is a positive constant.
Once c(x) has been found, Г^/ф)  and т(x /ф) become known for all x G D. Now, 

consider the following problem:
Problem 3.1.2. Given c(x) and А ^ , ф )  for (x/ф) G Y, find p(x) =  p0 (x)/^x) .
Use (3.14). Put x G d- D. Then p(x) =  p0 and

p(£) ^  =  gl (x,ф), G Y\
Г(х,ф)

where the right-hand side is the known function

(3.19)

gl (x,ф) =  2 (ln А ф д ф') — ln А 0 ) +  I div (c2(£)V r (£ ,ф )) dr.
Г(х,ф)

Thus, the problem is reduced to a linear problem of integral geometry: find the inte­
grand from its integrals along a family of known geodesics. An estimate of the stability 
of this problem is given by the formula (see [24]):

Sf(x) dx -
D

2n 2n
1

2П
дgl(x(p ),ф) дgl(x(p ),ф)

0 0
дф д p

dp dф, (3.20)

where x(p) =  (cosp, sin p). Since the problem is linear and, by (3.20), p =  0 corre­
sponds to g1 (x(p),ф) =  0, a solution to the problem of integral geometry is unique.

Problem 3.1.3. Given c(x), p(x) and А ^, ф) ,  B (x/ф) for (x /ф) G Y, find p(x) 
inside D .

In this case use (3.15) on putting x G d- D  therein. We obtain

in which

h(£) ^  =  g2 (x,ф), G Y\
Г(х,ф)

g2(x,ф) =  —2B ( х , ф  — [  C (£,ф)) ^ ,
M x ^ ' )

Г(х,ф)

(3.21)

and C (x/ф)) is defined by (3.16) and is known for all values of variables. This implies 
that, finding h(x) in D, we come to an identical problem of integral geometry as before.



If it is solved and h ( x )  is found then (3.17) implies a linear equation o f elliptic type for
V p ( x ) :

div[c2(x )V ^ /p (x ) ) ]  — h ( x ) \ J p ( x )  =  0,  x  G D .

By hypothesis, p ( x )  on the boundary of D  satisfies the boundary condition

p ( x )  =  p 0 , V p ( x )  =  0, x  G d D .

It is known that a solution to an elliptic equation with Cauchy data on the boundary 
of a com pact domain is unique. Therefore, a solution to Problem 3.1.3 is also unique.

Thus, the totality of the facts about the uniqueness of a solution to all above 
problems implies the uniqueness theorem for a solution to the initial boundary value 
problem.

3.1.2 A n inverse problem  with single observation

Assume that the density of the medium is the constant p  =  1 and ц ( x ) is a given 
positive function ц ( x ) >  ц 0 >  0, and ц ( x ) =  1 outside Q. We assume also that p ( x , t )  

can be represented in the form

p ( x , t )  =  k ( t ) ц ( x ) p 0 ( x ) ,  (3.22)

where k ( t )  is a given function such that k ( 0 )  =  1, while p 0 ( x )  is the unknown function. 
We suppose that the support of p 0 ( x )  lies in an open com pact domain Q C R 2 with a 
sm ooth boundary д Q. Consider a solution o f (3.3) with function F ( x , t )  of the form

F ( x ,  t )  =  S ( x 1) S ( t ) ,

and zero initial data (3.4). Assume that the trace o f the solution to problem (3.3), 
(3.4) and its normal derivative are known on some finite piece S  C  ( д Q  x  R ) o f the 
lateral boundary o f Q  =  Q  x  R,

u\s =  g (x,t),
д и

д п S
h ( x ,  t ) . (3.23)

Below we give a more exact description of S .
P r o b l e m  3 . 2 . 1 .  Given g ( x , t )  and h ( x , t )  find p 0 ( x ) in Q.
We assume that the line x 1 = 0  has no an intersection with Q. Let, for a definiteness, 

Q  lies in the half-plain x 1 >  d  for some d  >  0 .
Note the physical sense of the functions g  and h  which present data o f the inverse 

problem. The function g ( x , t )  is the thirs component of the displacement vector, while 
h ( x , t )  is expressed via the normal stress o 3n at д Q . Indeed, if и 1 =  u2 =  0 in (3.1) 
(that correspond the case when F 1 =  F 2 =  0), then for component of the stress tensor 
on д Q the equalities o 3i =  ц д и / д x i, i =  1, 2 , a 33 =  0 take place. From these equalities 
follows that д и / д п  =  а 3п/ ц  on д Q .

Here, we obtain a stability estimate for the inverse problem. It based on the method 
proposed in [16]. The essence o f it is concluded in a construction o f some amplitude



relations on the characteristic surface t  =  т(x ), where т(x ) is the solution to the Cauchy 
problem

\Ч т  ( x ) \2 =  - ^ Ty т Ui=0 =  0,  (3.24)

and obtaining a priory estimates for the solution to (3.3) with data (3.23).
Define S  =  S ( T ) as S ( T ) =  { ( x , t )  G ( д Q  x  R)| т( x )  — t  — T  +  т(x)}, where T  is an 

positive number. Assume, that the Riemannian metric dт =  л / ( d x i  +  d x 2 ) / - ( x )  has 
non-positive curvature in Q. The sufficient condition of it is fulfilment of the following 
inequality (see section 4):

A ln - ( x )  — 0, x  G Q.

Let, moreover, Q  be convex with respect to geodesics of the metric. Then an arbitrary 
pair of points x  and y  can be joined in Q by an unique geodesic.

For fixed numbers q0 >  0 and d  >  0, denote by Л ( д 0 , d )  the set of functions ( - 0 , p ), 
satisfying the following conditions:

(1) supp(p0(x ) , - ( x )  — 1) C Q, infq т( x )  >  d,

(2) ||p 0||c i7(q) — q o , II-  — ^Ic19̂ ) — q o , l k  — i-llc 11̂ ,^) — q 0 .
For the solution to the direct problem (3.4), (3.4) the following lemma holds.

L e m m a  3 .1 . F o r  a r b i t r a r y  T 0 >  0 t h e r e  e x i s t s  q0 ( T 0 ) >  0 s u c h  t h a t  f o r  a n y  ( - , p 0 ) G 

Л (q 0 ( T 0 ) ,  d )  s o l u t i o n  t o  ( 3 . 3 ) ,  ( 3 . 4 )  i s  r e p r e s e n t e d  i n  K ( T 0) =  { (x, t)\ 0 <  t  — T 0 — т(x ) }  
as

u ( x ,  t )  =  a 0 ( x ) 9 0 ( t  — т( x ) )  +  a 1( x ) d 1( t  — т( x ) )  

+ a 2 ( x ) d 2 ( t  — т( x ) )  +  v ( x ,  t ) , (3.25)

w h e r e  90 ( t )  i s  t h e  H e a v i s i d e  f u n c t i o n ,  w h i l e  9 1( t )  =  t 9 0 ( t ) ,  0 2 ( t )  =  t 2 9 0 ( t ) / 2 .  T h e  

c o e f f i c i e n t s  a 0 ( x ) ,  a 1( x )  a n d  a 2 ( x )  s a t i s f y  i n  { x  G R2| x 1 — d }  t h e  c o n d i t i o n s

a 0 ( x )  =  - ,  a 1( x )  =  0, a 2 ( x )  =  0,  x 1 — d.

O u t s i d e  o f  th i s  d o m a i n  a 0 ( x )  is  d e f i n e d  by  t h e  f o r m u l a e

p 0 (£) — div (- (£ )Ч т (£))a 0 (x ) =  1 exp (p (x ) ) , p (x ) =  1 dт.

(3.26)

(3.27)
Г(х)

H e r e ,  r (x )  i s  t h e  g e o d e s i c  c o n c l u d e d  o n  t h e  p l a n e  £ 1, £ 2 b e t w e e n  x  a n d  t h e  l i n e  ^  =  d,  

w h i c h  i t  i n t e r s e c t s  o r t h o g o n a l l y ,  dт i s  a n  e l e m e n t  o f  t h e  R i e m a n n i a n  l e n g th .  T h e  

c o e f f i c i e n t s  a 1( x )  a n d  a 2 ( x )  a r e  s o l u t i o n s  t o  t h e  f o l l o w i n g  C a u c h y  p r o b l e m s :

2 - ( x ) V a 1( x )  ■ Ч т ( x )  +  a 1(x ) [d iv ( - (x )V т (x )) — p 0 ( x ) ]

—d iv [ - (x )V a 0(x) — p 0 ( x ) - ( x ) a 0 ( x ) V  т (x)] 
+ p 0 ( x ) [ p ( x ) V a 0 ( x )  ■ Ч т ( x )  — k f ( 0 ) a 0 ( x ) ]  =  0, =  0, (3.28)



2 - ( x ) V a 2( x )  ■ Ч т ( x )  +  а ^ ^ ^ - ^ у Ч т (x )) — p 0 ( x ) ]  

— div^ - ( x ) V  a 1( x )  — p 0 ( x ) - ( x ) [ a 1 ̂ ) Ч т  (x)

— V a 0 ( x )  +  (x ) ] j

+ p 0 ( x )  - ( x ) V a 1( x )  ■ Ч т ( x )  +  k ' ( 0 )  ( - ( x ) V a 0 ( x )  ■ Ч т ( x )

— «1 (x ))  — k " ( 0 ) a 0 ( x )  = 0 ,  а 2 \ х =  =  0. (3.29)

Functions ak G C 17- 2k(D(T0 )), k =  0 , 1,2, D(T0 ) =  { x | d — т(x) — T0 } , while 
v(x,t)  vanishes for t < т(x). Functions Djv(x,t) ,  j  =  0, 1, 2, Dj =  дj /3V belong 
to C 4 - j (K(T0 )), K(T 0 ) =  { (x,t) G K (T0)| t >  т(x )}. Moreover, there exists a positive 
constant C such that for all q0 — q0 (T0 ) the following inequalities hold:

||a0(x) — 1/2'\Ic 1’i(d (t 0)) — C qo ,
IIa k(x) ||c17- 2k(D(T0)) — Cq0, k =  1 , t2, 

D j v (x , t ) l lC4 - j (K(To ))  — C qo , j  = 0 , 1 , 2 .

The proof o f this Lemma is given in [23]. The main result which proved therein is 
the following stability theorem.

Theorem  3.2. Let ( - ,p0k) G Л^ 0 ^ ) ,  k =  1,2, while (gk ,hk ) be the Cauchy data 
corresponding solutions to (3.3), (3.4) for p(x,t)  =  k(t)p0k(x). Let, moreover, Q is 
contained in some Riemannian circle of the radius p and the condition T > 4p holds. 
Then there are exist positive numbers q** and C such that for q0 — q** and arbitrary 
( - 0 ,pk ) G Л^0 ^ ) ,  k =  1, 2, the following inequality valid

2

llp01 — p02 |Ih1(Q) — C \_ ^  (llD t (g1 — g2) l H1(S) +  llD t (h1 — MIlL^S))
j=0

+  ^ 2  11 D t (g1 — g2) l L2(So) ,
j=0

in which D j  =  д -j /дtj , S0 =  { (x,t) G S \ t =  т(x )}.

As a corollary, we obtain the uniqueness theorem.

Theorem  3.3. Let the conditions of the previous theorem be satisfied and g1 =  g2 , 
h1 =  h2 . Then there exists q0 >  0 such that for any ( - ,p01) G Л^0 ^ )  and ( - ,p 02) G 

Л^ 0 ^ )  the equality p01(x) =  p02(x) holds in Q.

3.2 3D inverse problem
In what follows, we will be interested in the problem of determining the functions 
A(x ) , - ( x ) , p(x,t)  and q(x,t) from a given information about the family o f solutions 
to some direct problems for (3.1). We will assume that p(x) is a given function (for



example, a given constant). The inverse problems of determining the kernels p ( x , t )  

and q ( x , t )  in (3.1) under the assumption that p ( x , t )  and q ( x , t )  are representable in 
the forms p ( x , t )  =  k 1( t ) p 0 ( x )  and q ( x , t )  =  k 2 ( t ) q 0 ( x ) ,  where k 1( t )  and k 2 ( t )  are given 
functions, while p 0 ( x )  and q0 ( x )  are unknown functions whose support lies in some 
com pact domain were studied earlier in [10, 21]. Here no special form of p ( x , t )  and 
q ( x , t )  is assumed. The constance of this subsection is based on the paper [26].

Formulate the posing of the inverse problem under consideration. Suppose that, in
(3.1), the function F  has the form

F ( x , t ; y )  =  f 0S ( x  — y , t ) ,  (3 .30)

where y  G R 3 is a point, a parameter of the problem, 5 ( x  — y , t )  is the Dirac delta- 
function, and f 0 =  ( f 0 , f20, f30) is the numerical vector characterizing the direction of 
the force concentrated at the point ( y ,  0). Let u ( x ,  t ;  y )  be a solution to (3.1) satisfying 
the condition (3.2). Assume that, for some e G (0 ,1 ), outside the domain B £ =  { x  G 

R 3| |x| <  1 — e } ,  the functions A(x), y ( x )  and p ( x )  coincide with given constants A0, 
y 0 and p 0 respectively and A0 +  y 0 >  0, y 0 >  0, p 0 >  0, and the functions p ( x , t )  and 
q ( x , t )  are identically zero for x  outside B £ for every t  >  0.

S t a t e m e n t  o f  t h e  I n v e r s e  P r o b l e m .  Suppose that, for some positive number T  >  0, 
the function ( x , y , t )  G D ( T ) ,  D ( T )  =  { ( x , y , t ) \  ( x , y )  G ( д В 0 x д В 0) , t  G [ 0 , ^ ^ ^ )  +  

T ], } ,  д В 0 =  { x  G R 3||x| =  1},

u ( x , t ; y )  =  f ( x , y , t ) ,  ( x , y , t y  G D ( T ) . (3 .31)

From a given function f  ( x , y , t ) ,  find A ( x )  and y ( x )  in B £ and p ( x , t )  and q ( x , t )  in
B £  x  [ 0 , T ].

For a homogeneous medium, when p, A, and у  are constant, p  =  q  =  0, problem
(3.1), (3.2) was solved by Love [11]. Its solution is given by the formula

f  0
u ( x , t , y )  =  -j-------2 \--------- 1 ^  — тs ( x , y y4 n p  c2\x — y\

1 (  f 0

+ 4 n p  V d iv l  ^ 1 ^  — — t  —

where 9 1( t )  =  t 9 0 ( t )  and 90 ( t )  is the Heaviside function.
Introduce an infinite system of functions that were obtained from the Heaviside 

function by the consecutive integration or differentiation:

t k

9 k ( t )  =  j - M t ) ,  k  =  1 , 2 , . .  
k !

d k
o - k . ( t )  =  ^ « 0 ( 1 )  =  e - y t ) ,  k  =  1 , 2 , . . . .

Note that the functions o f this system satisfy the equality 0'k ( t )  =  0 k - 1 ( t )  for each 
k  =  0, ± 1 , ± 2 , . . . .  For a homogeneous medium in which p  =  p ( y ) ,  cp =  cp ( y )  and 
c s =  c s ( y ) ,  we can represent (3.32) as the finite ray expansion

1

u ( x , t , y ) =  ^  la ( k , p ) ( x , y ) 0 k ( t  —
k = - 1

+ a (k’s ) ( x , y ) « k ( t  — ^ ^ У ^ !  , (3.33)



in which the coefficients a (k,p') ( x , y )  are calculated by the formulas

a ( - l , v \ x ,  y )  

a (0,p\ x ,  y )  = 

a (1,p\ x , y )  =

_ ( f 0  ■ V y Tp ( x , y ) ) V T p ( x , y )

4 n p ( y )  cp ( y )тp ( x , y ) ,
V т P ( x , У ) x  ( f 0  x  V y Tp ( x , y ) )  — 2 ( f 0  ■ V y Tp ( x , У ) ) V т p ( x , У ) (3 34) 

4 n p  ( y )  cp ( y )T2 ( x , y ) , .
V т p ( x , y ) x  ( f 0 x V y Tp ( x , y ) )  — 2 ( f °  ■ V y Tp ( x , У ) ) ) V т p ( x , У )

4 n p  ( y )  cp ( y ) Tp3( x , y )  ,

and the coefficients a (k,s') ( x , y )  are computed by the formulas

a ( - 1 , s ) ( x , y ) 

a (0,s) ( x , y ) = 

a (1>s)(x , y ) =

Vтs (x ,y ) x ( f 0 x V yTs (x ,y ))
4 np(y) cs (y )тs (x ,y ) ,

2( f 0  ■ V y Ts (x̂  y ))VTs (x , y y — V ts(x , y y x ( f  0 x V y Ts (x̂  y )y 
4 np(y) cs (y )T2(x,y )

2( f  0 ■ V y Ts (x , y ))VTs (x , y) — VTs (x , y) x ( f  0 x V y Ts (x , y )y
4 np(y) cs (y )T! (x ,y )

(3.35)

By the above assumption that the medium is homogeneous in some neighborhood of 
the source, the solution to (3.1), (3.2) coincides with its solution for a homogeneous 
medium in a sufficiently small neighborhood of ( y ,  0). In [27], we established an infinite 
asym ptotic expansion o f the solution to (3.1), (3.2) for an inhomogeneous medium 
similar to (3.33). The assertion is given as Lemma 3.2 below. This expansion is an 
“expansion with respect to smoothness” (the term is due to V. M. Babich [4]) in a 
neighborhood of the characteristic cones t  =  Tp ( x , y ) ,  t  =  Ts ( x , y )  and is a basis for the 
study of the above-posed inverse problem.

We say that the set of functions p ( x ) ,  A ( x ) ,  y ( x ) ,  p ( x , t )  and q ( x , t )  belongs to P , 
(p ,  A, y , p , q )  G P , if the following hold:

(1) p ( x ) ,  y ( x )  and A ( x )  +  y ( x )  are positive functions for x  G R 3 and coincide with 
positive constants p 0 , у 0 , A0 +  y 0 outside the domain B £ =  { x  G R 3| |x| <  1 — e } ,  

e  G (0 ,1);
(2) the functions p ( x ) ,  y ( x ) ,  A ( x )  and p ( x , t ) ,  q ( x , t )  are infinitely differentiable with 

respect to their arguments for all x  and t;

(3) for all t  G [ 0 , T ), T  >  0, the supports o f p ( x , t )  and q ( x , t )  are included in B £ 

and supp(p(x) — p 0 , A ( x )  — A0 , y ( x )  — у 0) C  B £;

(4) the metrics dTp =  \dx\/cp ( x ) ,  dTs =  \dx\/cs ( x )  are simple in x  G R 3.

Introduce some additional notation. Let a  =  ( a 1, a 2 , a 3) be a vector depending on 
the space variables x  and y  and let т be a scalar function o f these variables. Denote 
by ( a , T ) the com plex functions of x  and y  defined for i ,  j  =  1, 2 ,  3 and integers m



by the equalities

к 0  ( a , r ) =  - X ( x ) 8 i j  ( a  - V r ) -  + ( x ) (  a  д Х -  +  a j  ,
дт

Kh ( a , r ) X ( x ) S i j diva +  +  ( х ) (  д а  +  ^ X i  
' d x j  d x i

дт  дт
- p o ( x ) 5 i j  ( a  ■ V r ) -  q0 ( x ) {  a i  —  +  a j  d x ) ,

дт

/ d a ' d a ■
« m  ( a , r ) =  p ( m - 2 ) ( x ) S i j  d iva  +  q {m - 2 ) ( x ) [  d x  +  d x

дт

1d x .

дт дт
- P ( m - i ) ( x ) S i j ( a  ■V r ) -  q(m - 1 ) ( x )  ^a i  —  +  a j - x ) ,  m  ^  2, (3.36)

in which

P m ( x )
d mp ( x ,  t )

d t m

- m q ( x , t )

, = » '  q" ' ( x ') =  ~ d - i m t=0

Let Q (n,p) and Q (n,s) be the vector functions whose components Q 4 ’̂  and Q X ’s\  i

1 , 2 ,  3, for n  =  1 , 2 , . . .  are calculated by the formulas

3 n+1

Q A  =  -  E E  [ G  ( a <n- m-p ) , r p )
j=1  m=2

3 n+1

q A  =  -  E E  { « m  ( a , n - m ’s) , r s )
j=1  m=2

Assume that Q (0’p) =  0, Q (0’s) =  0. Denote by

d r p d

d x j d x j

d r s d

d x j d x j

« m - 1 ( a ( n - m ’p' , r p )

« m - 1 ( a ( n - m ’s' , r s ) (3.37)

Cp =  ( d , ( 2  , (3p) =  - 4 ( y ) r p ( x , y ) V v тp ( x , y ) ,

( s =  ( Ci , Cs2 , Q ) =  - 4 ( y ) r s ( x , y ) V y r s ( x , y )

the Riemannian coordinates of a point x  with respect to y  in the metrics d r p 

l d x l / c p ( x )  and d r s =  l d x + c s ( x ) ,  respectively and designate as

Jp ( x ,  y )  =  det - e

d x

' - Z s
J s ( x , y )  =  det ( —

the Jacobians o f the transformations from the Riemannian coordinates to the Cartesian 
coordinates. Define a scalar function A (p') ( x ,  y )  and a matrix T ^  ( x ,  y )  by the equalities

A (p\ x , y ) =
\ / Jp ( x , y )

4 n r p ( x , y ) c 2 ( y W  P ( x ) P ( y )
exp 1 f  p o (0  +  2 qo (C) d  I

2  ]  m  +  2 + a )  T p t
\  T pA ’V) )

(3.38)

r j . isu   ̂ S  ( x , y ) V J s ( x , y )T ( ) ( x , y )  = ------------------- ------- . : exp
4 n r s ( x , y ) c 2s ( y ) +  P ( x ) p ( y )

f  q o ( 0

2 J  + 0
\  r s(X’V)

\
drs (3.39)



In these equalities £  is a variable point of the geodesics r p ( x , y )  and r s ( x , y ) ,  respec­
tively, r'p =  rp ( £ , y ) ,  r's =  r s ( £ , y )  and S ( x , y )  is the matrix exponent:

S  ( x , y ) ( V  ln cs ( £ ) ) t d£ 1

in which (V  ln c s ( £ ) ) t is a column vector and d £  =  ( d £ 1, d £ 2 , d £ 3) is a row vector, and 
their multiplication is carried out by the rules of matrix algebra.

Lem m a 3.2. S u p p o s e  t h a t  (p ,  X,  + , p ,  q )  E P , y  E d B 0 . T h e n  t h e  s o l u t i o n  t o  ( 3 . 1 ) ,

( 3 . 2 )  i s  r e p r e s e n t a b l e  as  t h e  a s y m p t o t i c  s e r i e s

u ( x , t , y ) =  E [a ( k ’p ) ( x , y ) Bk ( t  -  rp ( x , y ) )
k = - 1

+ a ( k ’s ) ( x , y ) Bk( t  -  r s ( x , y ) ) ] , (3.40)

i n  w h i c h  a (k ’p ')(x , y ) a n d  a (k’s')(x , y ) a r e  f u n c t i o n s  o f  c l a s s  C^(M 6 \ { (y ,y )}) d e f i n e d  by  

( 3 . 3 4 ) ,  ( 3 . 3 5 )  f o r  l x  -  y l  <  e  a n d  c a l c u l a t e d  f o r  |x  -  yl  >  e  by  t h e  f o r m u l a s

a (k’p)(x , y ) =  cp (x ) [A (k’p ) (x , y )V r p (x , y ) +  V r p (x , y ) x B ■̂k’p) (x , y )}, 

a [k’s ) (x , y ) =  c s (x )[A (k’s' (x , y )V r s (x , y ) +  V r s (x , y ) x  B (k’s)

i n  w h i c h

A ( - 1 ’p ) ( x , y )  =  - f  ■ V y r p ( x , y ) ) A (p)( x , y ) ,  B ( - 1 ’p ) ( x , y )  =  0,  (3.41)
B ( - 1 ’s ) ( x , y )  =  - f  x  V y  r s ( x , y ) ) T  ( s ) ( x , y ) ,  A ( - 1 ’s ) ( x ,  y )  =  0 ,  (3.42)

a n d  t h e  s u b s e q u e n t  c o e f f i c i e n t s  a r e  c o m p u t e d  by  t h e  r e c u r r e n t  f o r m u l a s

A ( n - 1 ’p) ( x , y )
A ( n - 1 ’p ) ( £ p ( x ,  y ) , y )

A ( p ) ( Cp( x , y ) , y )

+  f  R (n’p ) ( £ , y ) d r i

, p ( x , y ) , y )  +  J  2 A (p) ( £ , y )  drp
ГР(Х’£р(Х’у))

A (p\ x ,  y ) ,  n  >  1

B (n’p ) ( x , y ) =  X + + i f i ) ( c p Q (n’p) x  V r p  -  [ + A r p  +  V +  ■ V r p  -  q0c - 2 ] B ( n - 1 ’p)

c

p ( X  +  + )

2 + ( V r p  ■ V ) a ( n - 1 ’p) +  V ( ( X  +  p ) c - 1  A ( n - 1 ’p ) ) -  c - 1  A ( n - 1 ’p )V + x  V r p I, n  >  0,

B ( n - 1 ’s) ( x , y ) B  ̂ n - 1 ■l ' ( ^ ^ l ( x . y ) . y ) T  M ( U x , y ) , v )

i

+  2
( T ( s ) )  1 ( x , У ) ,  n  >  1

A (n’s ) ( x , y )  =
X +  +

J M & v) drs
Гs  (X’£s (x,y))

{ [ ( X +  p ) d i v a (n - 1’s) +  V + ■ a (n -1’s) -  (p0 +  q0)c- 1A (n -1’s)]c- 1 

+  [pA rs +  V + ■ V rs -  q0c- 2]A (n - 1’s) +  [2+cs( V rs ■ V ) a (n - 1’s)s

+ c s V ( ( X  +  p ) c - 1 A ( n - 1 ’s ) ) -  A ( n - 1 ’s )V p  -  c s Q (n’s ) ] ■ V r s } , n  >  0

2c s



I n  t h e s e  f o r m u l a s  £p ( x ,  y )  a n d  £s ( x ,  y )  s t a n d  f o r  t h e  i n t e r s e c t i o n  p o i n t s  o f  t h e  g e o d e s i c s  

r p ( x , y )  a n d  r s ( x , y ) ,  r e s p e c t i v e l y ,  w i t h  t h e  s p h e r e  l x  -  yl  =  e ,  t h e  s c a l a r  f u n c t i o n  R (n,p') 

a n d  t h e  v e c t o r  f u n c t i o n  R (n’s  a r e  d e f i n e d  b y  t h e  e q u a t i o n s

R (n’p)

R ( n ’s)

m o r e o v e r ,

- ( c p Q {n’p) ■ V r p  -  [(X +  + ) c - 1 d i v ( c p V r p  x  B (n -1 ,p ) ) 

+ V +  ■ ( V r p  x  B ( n - 1 ’p ) ) +  2 + ( V r p  x  B ( n - 1 ’p ) ) ■V  ln cp]^j ,

1  { c sQ (n’s) +  A (n-1’s)[(X +  2 + ) V lncs -  VX] -  (X +  + ) V A ( n - 1 ’s ) }  x  V r s  
P

A ( n  1’p ) ( f P ( x , y ) , y ) =  2 ( f 0 ■V yTp( x , y ) ) [Cp( y )] 
A ( p ) ( £ p ( x , y ) , y ) l£p ( x , y ) -  y ln

1, n  =  1, 2,

0,  n  >  2,

B  ( n - 1 ’s ) ( U x , y ) , y ) T  ( s ) ( U x , y ) , y )  =  -
( f 0 x V yr s( x , y ) ) [ c s( y ) ]r

Ы х , у) -  y ln
~1, n  =  1, C2,
0 ,  n  >  2.

Use Lemma 3.2 for calculating the auxiliary series for the function f  ( x , y , t )  defined 
by (3.31). Let

t

f  ( x , V , t ) =  f  ( x , V , z )  d z ,  t >  °.

Given x  E d B 0 , y  E d B 0 , x  =  y ,  put

[f ] t = t o ( x , y ) =  И т  f ( x , y , t )  -  Urn f ( x , y , t ) .
t=to+0  t=to — 0

From (3.41), (3.42) it follows that A (—1’p') =  0  if f 0 ■ V y rp ( x , y )  =  0 and B (—1’s') =  0 
if f 0 x  V y r s ( x , y )  =  0. For every fixed y  E d B 0 , the equality f 0 ■ V y r s ( x , y )  =  0 iis
possible only at those x  E d B 0 that correspond to the geodesics r p ( x , y )  starting from 
y  in directions orthogonal to f 0. The set o f these points x  forms a curve l ( y )  lying on 
d B 0 . The equality f 0 x V y r s ( x , y )  =  0 is possible for fixed y  E d B 0 only at the only 
pointx E d B 0 at which the geodesic r s(x ,y ) collinear to the vector f 0 at y  intersects 
d B 0 . At all points where

f 0 ■V y rp ( x , y ) = 0 ,  f 0 x V y r s ( x , y ) =  0,

we have the equalities

rp ( x , y ) =  in f { t 0 110 >  0, [f ] t = t o ( x , y ) =  0 },

r s ( x , V ) =  in fЫ  t 0 >  Tp ( x , У ) ,  [ f ] t = t o ( x , V ) =  0 } .

By the smoothness o f r p ( x , y )  and r p ( x , y ) ,  they are defined by these equalities for all 
( x ,  y )  E d B 0 x  d B 0 . Moreover, for m  =  0 , 1 , 2 , . . . ,  the equalities hold:

d  m f  ( x , y , t )  

d t m

Thus, we have

a ( m - 1 * \ x , y ) ,

t=Tp(x,y)

d  m f  ( x , y , t )  

d t m
a (m—1’s ) ( x , y ) .

- t=Ts(x,y)

n



L e m m a  3 .3 . T h e  d a t a  o f  t h e  i n v e r s e  p r o b l e m  d e t e r m i n e  u n i q u e l y  f o r  al l  ( x , y )  E 

d B 0 x  d B 0 t h e  f u n c t i o n s  rp ( x , y )  a n d  rp ( x , y )  a n d  t h e  i n f i n i t e  c h a i n  o f  t h e  c o e f f i c i e n t s  

a (k,p') ( x , y )  a n d  a (k,s') ( x , y )  o c c u r r i n g  i n  e x p a n s i o n  ( 3 . 3 3 ) .

Note that the functions rp ( x , y )  and rp ( x , y )  are uniquely determined by the defini­
tion o f the wave propagation speeds of the longitudinal and transverse waves respec­
tively, i.e., the definition of cp ( x )  and c s ( x ) ,  and the functions a (n,p') ( x ,  y )  and a (n,s') ( x ,  y )  

are uniquely determined by the definition o f cp ( x )  and c s ( x )  and the functions p k ( x )  

and qk ( x )  for all k  <  n  + 1 .  Therefore, instead of the initial inverse problem, we 
may consider the problem of constructing the functions cp ( x ) ,  c s ( x )  and p k ( x ) ,  qk ( x ) ,  

k  =  0 , 1, 2 , . . . ,  inside B £ from the functions rp ( x , y ) ,  r s ( x , y )  and a (k,p') ( x , y ) ,  a (k,s\  

k  =  0 , 1, 2 , . . . , defined for ( x , y )  E d B 0 x  d B 0 . This new problem splits into a sequence 
of problems: first we can find cp ( x )  from the given function r p ( x ,  y )  and then find c s ( x )  

from r s ( x , y ) ,  and then recurrently find p n ( x )  and qn ( x )  by using the family a (k,p') ( x , y ) ,  

a (k,s) for - 1  <  k  <  n  -  1.

The problem  of determining cp ( x )  inside B 0 from a function rp ( x , y )  as well as 
c s ( x )  from r s ( x , y )  given for ( x , y )  E d B 0 x  d B 0 was studied for R 3 in [5, 6, 13]. The
results obtained in these articles imply the uniqueness of the determination of cp ( x )  

and c s ( x )  inside B 0 from given rp ( x , y )  and r s ( x , y ) .  The so-found functions cp ( x )  and 
c s ( x )  determine rp ( x , y )  and r s ( x , y )  and also r p ( x , y ) ,  Jp ( x , y )  and r s ( x , y ) ,  J s ( x , y ) ,

and the matrix exponent S ( x , y )  for every ( x , y )  E  R 6. Furthermore, since the density 
p ( x )  is assumed to be defined, cp ( x )  and c s ( x )  uniquely determine the elasticity moduli 
X ( x )  and q ( x ) .

Consider the problem of the determination of the functions p n ( x )  and qn ( x )  from 
the family of functions a (k,p') ( x , y )  and a (k,s') ( x , y ) ,  - 1  <  k  <  n  -  1 „  defined for ( x , y )  E 

d B 0 x  d B 0 . For n  =  0, from the given functions a (—1,p') ( x , y )  and a (—1,s') ( x , y )  we 
com pute the functions A (—1,p') ( x , y )  =  cp ( x ) a (—1,p') ( x , y )  • V r p ( x , y )  and B (—1,s') ( x , y )  =  

c s ( x ) a (—1,s)( x , y )  x  V r s ( x , y )  at ( x , y )  E d B 0 x  d B 0 . Using (3.38), (3.41) and (3.39), 
(3.42), we come to the equalities

/  +  ^ ( ^  d r p =  9 0 ( X , V ) ’ ( x , V ) E d B 0 x  d B »  (3 .43)
rp(x,y)

Гв(х,у)

д р ( 0

q ( £ )
d r s  =  h 0 ( x , y ) ,  ( x , y )  E d B 0 x  d B 0 , (3.44)

in which g 0 ( x , y )  and h 0 ( x , y )  are the given functions defined by the formulas

J 4 n l A ( —1’p ) ( x , y)\Tp( x , y ) cp ( y ) ^ p ( x ) p ( y ) \
g 0 ( x , y ) =  2ln

1 l f 0  • V y r P( x , y ) W Jp ( x , y ) j

h 0 ( x , y ) 2 ln
4^\b ( ^ ^ х . у ^ ^ . у У 2 (y ) \/p(x ) p (y )

l ( f 0 x  V y rp (x , v ) ) S ( x , y ) W Js (x , y )



The problems of constructing the function under integrals in (3.43), (3.44) are prob­
lems of integral geometry on the families of geodesics, the questions of the uniqueness 
and stability of whose solutions were studied in [5, 6, 14] The results in these articles 
imply the unique determination of the functions ( p 0 +  2q 0 ) / ( X  +  2 q )  and q0/ q b y  the 
right-hand sides o f (3.43), (3.44). Since the elasticity moduli X(x)and q ( x )  are already 
found, the functions under integrals determine the functions p 0 ( x )  and q0 ( x )  uniquely.

It is proved by induction that, for any n  >  1, the functions p n ( x )  and qn ( x )  are 
defined uniquely by the coefficients a (k,p') ( x , y ) ,  a (k,s') ( x , y )  defined on ( d B 0 x  d B 0) for 
all - 1  <  k  <  n  -  1 . Indeed, assume that the functions p k ( x )  and q k ( x )  are already 
known for all k  <  n  -  1 and on ( d B 0 x  d B 0 ) there are defined a (k,p') ( x , y ) ,  a (k,s') ( x , y )  

for - 1  <  k  <  n  -  1. Then the known functions p k ( x )  and q k ( x )  determine a (k,p') ( x , y ) ,  

a (k,s) ( x , y ) ,  - 1  <  k  <  n  -  2, for all ( x , y )  E  R 6. Further, from given a (n—1,p') ( x , y )  and 
a (n—1’s') ( x , y ) ,  at the points ( x , y )  E d B 0 x  d B 0 , we com pute the functions

A ,n—1-p ) ( x , y )

B (n—1’s ) ( x , y )

cp ( x ) a ( n  1 , p ) ( x , y ) • V т p ( x , y ),  

c s ( x ) a (n—1’s ) ( x , y )  x  V r s ( x , y ) .

On the other hand, Lemma 3.2 defines formulas for their calculation via the scalar 
function R (n,p') ( x , y )  and the vector function R (n,s') ( x , y ) ,  in which p n ( x )  and qn ( x )  occur 
implicitly. Easy calculations show that these functions admit the representations

R n p)  ( x , y )  =  -  p f \  +  A ( - 1 * \ x , y )  +  R ln-p ) ( x , y ) ,
X ( x )  +  2 q ( x )

R ^ ^ y )  =  -  ‘R X x l  в  (—1-s ) ( x , y )  +  R tn-‘ ) ( x , y ) ,

where R (n,p)( x , y ) ,  R (n’s ( x , y )  and R (n’s ) ( x , y ) ,  R (n ’ s ) ( x , y )  depend only on p k ( x )  and 
q k ( x )  for k  <  n  -  1 and a (k,p\ x , y ) ,  a (k’s ) ( x , y ) ,  ( x , y )  E  R 6, for - 1  <  k  <  n  -  2, and 
hence are known. Therefore, we arrive at the inequalities

/  + 2 ^ )  d r p = g n (x^ y )  ̂ ( x , y ) E d B 0 x  d B 0  ̂ (3 .45)
Гр(х,у)

[  q n ( CК  , w  \
J  - q j p j  d r s =

гs (x,y)

( x , y )  E d B 0 x  d B 0 , (3.46)

in which g n ( x , y )  and h n ( x , y )  are the given functions defined by the formulas

g n ( x , y )
2

l ( f 0 • V y rp ( x , y ) )\

A (n—1’p ) ( x ,  y )  

A (p)( x , y )

A (n—1,p)(CP ( x , y ) , y )  

A { p ) ( Cp( x , V ) , V )

R {n,p)( C , y )  d  /  
2 A (p) ( C , y )  drp  ,

Гр(х£р(х,у))



h n ( x , y )
l ( f 0  x V yTs(x ,V))S(x ,V) \

B ( n - 1 's ) ( x , y ) T  ( s ) ( x , y )

- B ( •‘ ^ ( U x . v t v ) ! *  H U X t V t v )

1

2
R (n,s) ( C , v ) T ( s ) ( C , y )  d r fs

rs(x,£s(x,y))

2

In deriving (3.45) and (3.46), we have involved the fact that p n ( x )  =  qn ( x )  =  0 on 
the parts of the geodesics r p ( x , y )  and r s ( x , y )  that belong to B 0 \ B e . The appearing 
problems of constructing solutions to (3.45), (3.46) are quite similar to the problems 
of integral geometry for p 0 ( x )  and q0 ( x ) .  This implies the uniqueness of their solution. 
Thus, we have

T h e o r e m  3 .4 . L e t  (p ,  X, p , p , q )  E P . T h e n  ( 3 . 3 1 )  u n i q u e l y  d e t e r m i n e  f u n c t i o n s  cp ( x ) ,  

c s ( x )  a n d  d k p ( x , t ) / d t k lt=0 =  p k  ( x ) ,  d k q ( x , t ) / d t k lt=0 =  qk ( x ) ,  k  =  0 , 1 , 2 , . . . ,  i n  B e

Theorem 3.4 implies as a corollary a uniqueness theorem for a solution to the inverse 
problem.

T h e o r e m  3 .5 . S u p p o s e  t h a t  ( p , X , p , p , q )  E P  a n d  p ( x , t )  a n d  q ( x , t )  a r e  a n a l y t i c  

f u n c t i o n s  w i th  r e s p e c t  t o  t  f o r  t  E [ 0 , T ), T  >  0. T h e n  ( 3 . 3 1 )  u n i q u e l y  d e t e r m i n e  t h e  

f u n c t i o n s  cp ( x ) ,  c s ( x )  f o r  x  E B e a n d  p ( x , t ) ,  q ( x , t )  f o r  ( x , t )  E ( B e x  [ 0 , T ))

Note that when p ( x , t )  and q ( x , t )  are polynomials in t, for their construction, it 
is required to find only finitely many functions p k ( x )  and qk ( x ) .  For calculating these 
functions, it suffices to use the finite ray expansion of the solution to (3.1), (3.2). For 
this it suffices that the coefficients of (3.1) have finite smoothness.

4 Appendix. Sufficient conditions of non-positivity of 
a curvature for the conformal Riemannian metric

We derive here a formula for the sectional curvature of the conformal Riemannian 
metric and clear the question when this curvature is non-positive. Let x  E  R n, n  >  2,  

and
d s 2 =  g i j  ( x ) d x i d x j . (4.1)

Above and hereafter we use the Einstein summation convention. The Levi-Civita 
connections of the Riemannian space coordinated to metric (4.1) are determined by 
the following formula (see, for instance, formula (94.9) in [1])

rp =  1  gip ( d g n +  d g fl _  d g ij
ij 2 g  \ d x j  d x i d x l

(4.2)

where ( g i j ) is the inverse matrix to ( g ij ) .  Components R lkij  of the curvature tensor are 
calculated then as follows (formula (110.4) in [1])

R lkij
1 Г d 2 gi j  -  d 2 9ii 
2 \  d x k d x l d x k d x j

d  2g kj  +  d  2g ki 

d x ld x i d x l d x j
+  g pq ( г ^  r ki r p r q )r kj r l i ) (4.3)



Let a two-dimensional plane a is given by the two orthogonal unit vectors v =  (v\,. . . ,  vn ) 
and n =  (ni,. . . ,  Vn ),

gij  (x )v%v3 =  1, gij  (x)rfrf =  1, gij  (x)v irf =  0. (4.4)

Then the sectional curvature K (x ,a )  at a point x and in the given two-dimensional 
direction a is determined by the formula

K  (x,a) =  Rlkij vi vlnkn3 . (4.5)

Use formulae (4.1)-(4.5) for a calculation of the sectional curvature K(x, a) for the case 
of the conformal Riemannian metric ds2 =  g(x)ldxl2. We assume that g is a positive 
and twice continuously differentiable function in a domain П. In this case gij  =  g(x ) 8 ij , 
gij =  $i j /g(x), and

r p .ij
1

2

' d  ln g
s ip X X ~

+  8jp
d ln g
dxi

x d ln g
ij dXp

(4.6)

Then relations (4.4) are glvl2 =  1, glnl2 =  1, v ■ n =  0. Here v ■ n means the scalar 
product of vectors v and n. Taking these relations into account we find

d 2glj  d 2 gu  d 2 gk j  , d 2g k
+dxk dxl dxk dxj dxldxi dxldxj

d 2g d2g d2g
=  U lj 8U 5kj „ „ +  8ki

d x k  d x l  d x k  d x j  d x l d x i

v iv lnknj

d 2g
dxl dxj

v iv lnk nj

1 d 2 g  ,  i j  . i x  ( d 2 ln g  d ln g d  ln g v  % j  , % л
- g d x  d x  ( v  v J +  n  n J) =  - (  a„  a_---------^ ----- l ( v  v J +  n  n J)

d x i d x j dxi dxj
d2 ln g
dxidxj

(vivj +  j ) +  (V ln g ■ v ) 2 +  (V  ln g ■ n) 2

d2 ln g 1
g (v%vj +  п%П3) +  -  lV ln gl2.

d x i d x j g
(4.7)

To the other hand,

r j  r l v  %v ln k nj Ч х  d  ln g , x d  ln g  x  d  ln g  \ l j
f f +  t j p - T X T  -  S l ~ ] , ' n j

1 ( „ d ln g d ln g
dxj +  jp dxl
d ln g t x d ln g x d ln g ̂  i k

dxp

4 6kq dXi +  6iq' d x k
- 5 ,ki dxq

v n

1

4
x 1 (V  ln g ■ v)nq +  (V ln g ■ n)vq

- ^ ( V  l n g  ■ n ) v p +  ( V ln g  ■ v ) r jpj

(4.8)



F j  ф '  %v l nk V 1 ( ‘ kp Ф +  j  S t  -  S  K vj
d ln g

x (  S , q ^  +  S q  ̂  -  Su d ^ v  i v  lV d x i  d x l  dXq

\ ^ V  ^  g  ■ vw ’  - 1

x ( 2 ( V  ln g  ■ v ) v q -  1 ̂ V  
v g  d x q  J

From the latter formulae we obtain

gpq( ф r k i -  ^ r h ) v ' v V kV  =  Spq| [( (V ln  g  ■ V ) v p +  ( V  ln g  ■ v ) V

x ^(V lng ■ v)nq +  (V  lng ■ n)vq ĵ

- ( 2 (V  In g ; n ) n p -  1  d- d ^ )  ^ ln  g  ■ v  ) „ q -  1  ̂

=  ^ ( V  ln g^v ) 2 +  3(V ln g^n ) 2 -  1  lV ln gP 
4 g

Formulae (4.3), (4.5), (4.7), (4.10) imply that

K  (x-a) = - 1 HX  (v V  j + vV  ) '

ы  g ' 2 -

(4.9)

(4.10)

(4.11)

If n =  2 the latter formula can be written in a more simple form. Using that in this 
case n1 =  - v 2, n2 =  v1, we find

K  (x) =  - — A ln  g. (4.12)

Note that in the two-dimensional space there exists only the unique plane a , that 
coincides with this space. Therefore the curvature does not depend on a . Formula 
(4.12) coincides with the formula for the Gauss curvature of a surface in R3 equipped 
by isotropic metric ds2 =  g(x)ldxl2 (see chapter 2, §13, Theorem 2 in [2]). The latter is 
completely agrees with the theory of the curvature for the two-dimensional Riemannian 
manifolds.

In the general case, it is easy to prove using (4.11), (4.12) that the sufficient condi­
tion for a non-positivity of K(x, a) can be given as

n 2,A ln g >  0,
d2 ln g • •

g v%v3 >  0, n > 3.
dxi dxj

(4.13)

The manifold (Q, g) is called by the manifold of a non-positivity curvature if K(x, a) <  

0 for all x E Q and any two-dimensional planes a.
It is well known [3] (Hadamard-Cartan theorem) that in any simply connected 

complete manifold of a nonpositivity curvature each two points can be joined by a



single geodesic line. The latter is also true for com pact manifolds with strongly convex 
(with respect to geodesics) borders. Thus, if conditions (4.13) is fulfilled for all x  E Q 
and the boundary d Q  o f the domain Q  is convex then any two points of Q  are joined 
by a unique geodesic.

Related to this, we derive a sufficient condition for the strong convexity o f boundary 
d Q with respect to geodesics. Let the boundary given by the equation F ( x )  =  0, where 
F  is a twice continuously differentiable function, and F ( x )  <  0 in Q. Take an arbitrary 
point x 0 E d Q and consider a geodesic line passing throw point x 0 in a tangent direction 
v , v  =  ( v 1 , . . . ,  v n) ,  9 %з( x ° ) v iv j =  1, to d Q. Let s be the length of the geodesic and
s  =  0 at x 0. Then an equation of the geodesic line can be presented in the parametric 
form as x  =  x ( s )  =  ( x 1( s ) , . . .  , x n( s ) ) ,  where the function x ( s )  solves the Cauchy 
problem

X k =  - r kj X %X 3 , k  =  1 , 2 , . . . , n ,  x ( 0 )  =  x 0 , X(0) =  v.  (4.14)

Then the condition of the strong convexity o f boundary d Q  at x 0 can be written as 
F ( x ( s ) )  >  0 for all sufficiently small \s \ >  0. The latter is equivalent to the requirement

F ( x 0 ) +  F Xk ( x ° ) S x k +  - F xiXj (x°)Sx%Sxj +  o(\Sx\2) >  0, a s  \Sx\ ^  0. (4.15)

Here S x  =  ( S x 1, . . .  , S x n) =  x ( s )  -  x 0 . Taking into account that F (x0) =  0, S x k =

s v k -  s 2T kj ( x ° ) v iv j /2  +  o (s2) and F Xk( x 0) v k =  0, we find that condition (4.15) is 
satisfied if

- F x k (x0 )Tk (x0 )v%v3 +  FxiXj (x0 )v%v3 >  0 Vv E {v\ 9 %з(x 0 )vivj 1, v ■ V F (x0)}4 .16)

Hence, the border dQ is strongly convex with respect to geodesics if the latter condition 
holds for all x 0 E dQ.
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