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Abstract Integro-differential equations of the electrodynamics with dispersion and
viscoelasticity equations are considered in this paper. These equations differ from the
usual equations of electrodynamics and elasticity by convolutions terms which lead to
a dependence of solutions to these equations on a prehistory of a process. Hence, they
have a special type of "memory". Then some new inverse problems occur. Along with
parameters of a medium we need recover kernels of integral operators. Below we give
a review of some results for inverse problems in this direction.
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1 Introduction

We consider equations of the electrodynamics and elasticity which contain integral
convolution terms. Such type of equations describes in the electrodynamics processes
with a dispersion while in the elasticity it describes an influence of a viscosity of a
material. In both cases kernels of integral operators entering into the equations are
usually unknown. The propagation of electromagnetic and elastic waves depends on
these kernels. Thus, we come to the necessity of a consideration of some inverse prob-
lems related with the integro-differential equations. Since parameters of a medium
(or coefficients of differential equations) are often also unknown, the inverse problems
usually consist in a determination of some functions. A part of these functions depends
on spatial variables only, while an other can depend on the time variable also.

Below we give a review of some results related to inverse problems for the electrody-
namics and elasticity equations with "memory". In the next section we consider some
statements of inverse problems for equations of the electrodynamics with a convolution
term. They based on the author’s papers [17, 18, 19, 25|. The typical inverse prob-
lem studied here consists in the following. The electric permeability o(x) is a given
constant anywhere outside of a compact domain {2 with a smooth boundary 92 and
unknown inside €, a kernel £(z,t) is represented in the form e(x,t) = p(z)k(t), where
k(t) is a known function, while p(x) is an unknown one, and support of it is contained
in (2. The unknown functions should be recovered from the trace of a solution to the
Cauchy problem for the integro-differential electromagnetic equations given on 9f for
a finite time interval [0,7]. We give algorithms for solving these problems and stability
estimates for the solutions.
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In section 3 we consider two- and three-dimensional inverse problems for viscoelas-
ticity equations. In general, these equations contain 3 medium parameters, density
p(x) and 2 Lamé moduli A(z) and u(x), and two kernels p(x,t) and g(z,t). In the two-
dimensional case only 3 functions, namely, p(z), p(z) and p(x,t) enter in the equation.
We consider a posing of a two-dimensional inverse problem with many observations
in which a solution to the Cauchy problem with initial zero data depends on a pa-
rameter y that is a point of a concentrated force application belonging 9€). Then we
assume that the functions p(z), p(z) are unknown inside €2 and are given positive
constants outside of this domain. The function p(z,t) is supposed to be represented
as p(x,t) = po(x)k(t), where k(t) is given, while the support of pg(x) lies in Q and
po(z) is unknown. We demonstrate that all three unknown functions can be uniquely
found from the solutions to the direct problems given for all (x,y) € (99 x 9f1) and for
a finite time interval [0,7]. We also study a two-dimensional inverse problem with a
single observation where a source is fixed. In the latter case p(z) and pu(x) are suppose
be given anywhere. For the three-dimensional case, we consider the inverse problem
assuming that density p(x) is given, and that p(z), A(x), u(z) and p(x,t), g(x,t) are in-
finitely differentiable functions of its variables. In the setting with many observations
we prool that the functions A(z), u(x) as well as 9"p(x,t)/0t|i—o, 0"q(x,t)/Ot"|—0,
n =0,1,2,..., are uniquely determine in {2 by the displacements vector given for all
(z,y) € (902 x Q) and for a finite time interval [0,7].

In the Section 4, for a reader’s convenience, we derive sufficient conditions of non-
positivety of the Riemannian conformal metric. These conditions are used in Sections
2 and 3. Moreover, we also derive a sufficient condition for a boundary of a compact
domain be a convex with respect to geodesics of the Riemannian metric.

1 Inverse problems for the dispersion electrodynamic
equations

The propagation of electromagnetic waves in dispersion media is described by the
equations

oD _ rotH (x,t) + j(z,t) =0,
ot
u(x)%H(a:,t) +rotE(z,t) = 0; (x,t) € RY, (2.1)

where
i

D = ey(x)E(x,t) + / e(x,t — s)E(x,s)ds.
In these equations, e¢(x) is the dielectric permeability of the medium and the coefficient
e(x,t) characterizes the medium dispersion. The convolution k * £ corresponds to a

certain “memory” of the medium. In what follows, we consider the system of equations
(2.1) under the zero initial conditions

(B, H)tco = 0, (2.2)
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We assume that the function eg(x) > £gp > 0 is a positive and e(x, t) can be represented
in the form

e(w,t) = k(t)p(e),
where k(0) = 1 and k(t) is a known function. Suppose that the supports of the functions
go(x) — 1 and p(z) are contained in a compact open domain £ € R*® with smooth
boundary 0f). We are interested in determining a pair of functions &o(z) and p(x)
from a certain information about the solution of problem (2.1), (2.2). We give an exact
setting of this inverse problem a little latter. Suppose that the Riemannian metric
dr = ei*(2)|dz|, |dz| = (da? + da? + da?)'/2, has non-positive curvature in Q. A
sufficient condition for this is the inequality
3

2
Z Muiuj >0, V:v={(v,1nwn)#0, ze.
i1 8:6,8:@
Suppose that, in addition, the domain €2 is convex with respect to geodesics (see the
section 4, where the both a sufficient condition on non-positivity and a convexity
condition are given). Under these conditions, the metric is simple in the closed domain
Q: i.e., any two points z and y in € can be joined by a unique geodesic. We denote the
geodesic line joining points x and y by ['(x,y) and its Riemannian length by 7(z,y).
Below we consider two different posing of the inverse problems. First of them is
related with many observations, while the other one with a single observation.

2.1 An inverse problem with many observations

We assume herewith that exterior current having the form of a moment dipole con-
centrated at a point y € € and having direction jo(y); i.e., j = jo(y)d(x — y,t). We
also assume that jo(y) # 0 and lies in the tangent direction to 2 at y € 9€). Consider
the following inverse problem. Let 1 > 0 be an arbitrary number. Suppose that the
function H(x,t,y) is given for all (z,y) € (9 x 9Q) and all t < 7(x,y) + 7, ie.,

Hz,ty) = flz,ty), (2,y) € (00x09), t<7(2y)+n. (2.3)

It is required to determine o(z) and p(x) in Q from the function f(x,t,y).
Below, following [19], we give some arguments which reduce this problem to simpler
problems to be solved successively. In the case where eo(x) = 1, e(x,t) = 0 the solution

of problem (2.1), (2.2) has the form
0

J
H(z, 1) — rot[ma(t—n—m)}
-0
T XY e e — 1 e
S eI UG I R ey LG ]
Blz,t) = —Q[La(t—m— |)}+Vdiv[¢9(t—|x— )
" otldr|x — Y Ar|le —y| ° Y
1 VV'jO _jO SVV'jO _jO
- P e e D b 1o )
3v(v- %) — 4°
e ) (2.4
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where v = (z — y)/|x — y| and 0y(t) is the Heaviside function. In what follows, we
assume that the point y € 9€1 is a variable parameter of the problem.

Lemma 2.1. If the functions eo(x) and e(x,t) satisfy the assumptions made above and
are sufficiently smooth (say, of class C* (2 x R)), then, for small n > 0, the solution
of problem (2.1), (2.2) can be represented in a form similar to (2.4); namely,

H(:’UPt?y) - O[H(xﬂy)él(t - T(:’UPy)) + ﬁH(xay)é(t - T(:’UPy)) + f](:ﬁ,t,y),
E(xatay) - O[E(xay)él(t - T(:’UPy)) + ﬁE(xay)é(t - T(St,y)) + E(%,t,y),
t<71(z,y)+n. (2.5)

Here, ag(x,y), Bulx,y) and ap(x,y), Be(x,y) are solutions of the equations

y)
V4 A7(2,y) + eo()p(x))on(2,y) — Veo(z) x ap(z,y) = 0,
)

(2VT(z,y)
(2Vr(z,y) -V + Ar(z,y) + co(2)p(@)) Bulz, y) — Aan(z,y)
+K (0)eo(x)p(x)an (2, y) — V() x ap(z,y) — Veo(r) x Bp(x,y) =0,
(2.6)
co(x)ap(z,y) + V7r(r,y) X ag(z,y) =0,
o(2)Be(z,y) +eo(@)p(x)ap(r,y) + Vr(z,y) X Bulz,y)
—rotay(x,y) =0, (2.7)
and satisfy the limit conditions
timfo (r, (e, )] = S LD
lim 8, ), )] — LX), 25)

as x tends to y along the geodesic I'(x,y); here, v(y) is the unit tangent vector to
[(x,y) at the point y. The functions H(:c,t,y) and E(:c,t,y) are certain functions of
the variables (x,t) which are reqular at x # y and, moreover, satisfy the conditions
H(z,t,y) =0 and E(z,t,y) =0 for all t < 7(z,y).

Below we briefly outline the proof of this lemma. It is convenient to construct a
second order equation for function H(z,t,y) and consider the system of this second
order equation for H(x,t,y) and a first order equation for E(x,t,y). Substituting
representation (2.5) into this system, we find relations (2.6) and (2.7). By virtue of the
assumptions made above, in some neighborhood of y € 99 |, we have g¢(z) = 1 and
p(x) = 0. Therefore, for each fixed point y € 912, formula (2.4) uniquely determines the
values of the functions ay(z,vy), Su(x,y) and ar(zr,y), Sp(r,y) in some neighborhood
of this point. This implies the limit relations (2.8). As a result, the values of the
functions oy (z, y) and Sy (x,y) inside 2 are constructed, after eliminating ag(x,y) and
Be(x,y) from Eqgs. (2.6) by using algebraic relations (2.7), along geodesics as solutions
of ordinary differential equations, after which the functions ag(z,y) and pBg(x,y) are
found in explicit form. The system of equations for H(z,t,y), E(z,t,y), which results
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from substituting representation (2.5), makes it possible to prove the regularity of these
functions. It follows from (2.5) that

f(%,t,y) - O[H(xﬂy)él(t - T(:’UPy)) .
TBu(x,y)o(t — 7(x,y) + fz. t,y). (2.9)

Here, f(:c,t,y) is the regular part of the function f(z,t,y). Note that agy(z,y) # 0
for all (x,y) € (9 x 9Q) and = # y (see the corollary of Lemma 2.2 stated below).
Let © € 92 and y € 9 be fix points. Consider the function f(z,t,y) as a function
of the variable t. This function identically vanishes at ¢t < 7(x,y) and has nonzero
singular part at a t = 7(z,y), because ay(z,y) # 0. Therefore, 7(z,y) = sup{r},
{7} ={r e Rlu(x,t,y) =0, if t < 7}. Note that

t

ag(x,y) = lim /(t —s)flx,s,y)ds, (x,y) € (00 x IN). (2.10)
t—7(2,y)40

Thus, the inverse problem stated above can be reformulated as follows: determine ey(x)

and p(x) inside € from functions 7(z,y) and ag(z,y) given for all (z,y) € (90 x IN).

This problem, in turn, reduces to the following two problems to be solved successively.

Problem 2.1. Determine g¢(x) inside ) from a function 7(z,y) given for any pair
of points x,y belonging to Jf).

Problem 2.2. For a known function ey(x), determine p(x) inside €2 from a function
apg(x,y) given at (z,y) € (90 x 99Q).

Problem 2.1 is called the inverse kinematic problem and has been well studied (see,
e.g., books [15, 16]). The stability of its solution was estimated in the case of a two-
dimensional space by R. Mukhometov in [12] and in the case of a higher dimensional
space, in [5, 6, 13]. Here, we consider Problem 2.2.

Lemma 2.2. The function |ay(x,y)| has the expression

7°(y) x v(y)ly/det(5)
7Y zwij S ’ exp(—% / p(&)dr), (2.11)

I'(z,y)

v (2, y)| =

in which ¢ = ({1, (2, () = v(y)7(x,y) is the vector of Riemann coordinates of the point
x and det(%) is the Jacobian of the transition from the Riemann coordinates to the
Cartesian ones.

The proof of this lemma is fairly simple; we give it here, because formula (2.11)
plays the fundamental role in the problem under consideration. Equalities (2.6) and
(7) imply a differential equation for the function ay. It has the form

2V7(z,y) -V + Ar(z,y) + col@)p(@))an (2, y)
+Vineo(z) x (Vr(z,y) x ag(z,y)) = 0. (2.12)

This equation readily implies ay(x,y) - V7 (x,y) = 0. As is well known, the principal
singularities of the vectors H and FE are oriented in tangent directions to the front of

%)
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the electromagnetic wave propagation. Using this fact and taking the inner products
of both sides equality (2.12) and ay(x,y), we obtain an equation for |ay(x,y)|? of the
form
Vr(z,y) - Vien(@,y)|* + (Ar(w,y) + eo(2)p()
—Vr(x,y) - Vineo(x))|oaw(z,y)* = 0. (2.13)

Using formula (2.2.35) in [16] with a;; = d;;/eo(2), we obtain

Ar(x,y) — V7(x,y) - Viney(x) = eo(z) [7(3:2, i d%_lndet (%)},

in which % denotes differentiation along the geodesic I'(x, y). Observing that V7 (z,y)-
V =eo(z)L | we find

d <|aH(x,y)|2T2(:c,y) - / (&) d7'> —0. (2.14)

dr det (%) o

Using the limit equality (2.8) for the function ay(z,y), we obtain formula (2.11).
Corollary 2.1. For all (z,y) € 92 x I such that x # y, agy(x,y) # 0.

Formula (2.11) implies the relation
Anr{x,y)|lap(x,
[ pteyar - o DL

I(ow) 7°(y) x v(y)y/det(5;)
(x,y) € (902 x 90, (2.15)

which reduces Problem 2.2 under consideration to an integral geometry problem studied
in [5, 6, 12, 14]. Below, we give a result related to the stability of its solution, following
[16]. Suppose that a function z = y(¢) implements an one to one mapping of class C?
from the unit sphere S? centered at the origin to 99 so that the positive orientation
of 98 corresponds to the positive orientation of S%. Suppose also that ¢ and ¢ are the
spherical angles of the point £ € S? and T = [0, 7] x [0, 27] is the range of variation of
the variables 8 and . Finally, suppose that points x € 9€) and y € J{) are mapped
to points (61, 1) and £(0, o), respectively. Then x = x(£(01, 1)) = x(01, p1) and

y = x(§(02,92)) = y(02,02). We set g(x(01, 1), y(02, 02)) = g(01, ¢1,02,02). Then
relation (2.15) can be written in the form

/ p(g)dT:g(9179017927902)7
D2 (01,01),y(02,2))

((91, g01) - T, ((92, QOQ) e’. (216)

We also set 7(x(01, 1), y(02, p2)) = 7(01, @1, 02, 02), by I(g,7) we denote the determi-
nant

0 991 ggﬂ
I(Q? 77_) = det 9oy, T016,  Tip10o

Joo Torps  Terpa
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Theorem 2.1. If 9 € C?, eo(z) € C*(QUIN), p(z) € CHOUIN) and the family of
geodesics is simple in €, then the stability of the solution is estimated as

1
/p2(3:)53/2(:6) dr < = / 1(g,7) d0,dyp1dOydps. (2.17)
T

Q TXYT

2.2 An inverse problem with a single observation

As the exterior current j(z,t) we take the function j = jod(t)d(zy) with jo = (0,0,1) =
es and the Dirac-function 6(¢). Henceforth ey for k = 1, 2,3 stands for the unit vector
along the axis xx. Suppose that the plane x; = 0, on which the function §(z) is
localized, lies outside the closure of €2. Assume for definiteness that 2 lies in the half-
space R3 = {z|z; > d} for some d > 0. Seeking some technical simplifications in
studying the inverse problem, we assume also that gy(z) = 1 outside R}

Introduce a function 7(z) as the solution to the Cauchy problem

IVr(2)]? = co();  T|ey—o = 0. (2.18)

Consider some cylindrical domain G = G(T') = {{(x, )|z € Q,7(z) <t < T + 7(x)},
where T' is some positive number. Denote by S = S(T') = {(z,t) € (90 x R)|7(x) <
t < T+ 7(x)} its lateral surface, and by > = Y(T), its lower base (1) = {(z,t)|z €
O, t = 7(x) +0}.

The arguments of Lemma 2.3 (see below) imply that under certain assumptions on
the coefficients of (2.1) we can express the functions F(z,t) and H(z,t), which consti-
tute a solution to (2.1), (2.2), as the sums of 2 certain singular functions supported on
the characteristic surface ¢ = 7(x) and regular functions E(x,t) and H(x,t) supported
on {(z,t)|t > 7(x)}; namely,

E(x,t) = ag(x)d(t — 7(x)) + E(x,t), H(z,t) = ag(x)é(t — 7(x)) + H(x,t).

We assume here that eqg(x) is known function anywhere. In order to find p(z) on €2, we
assume that for the solution to (2.1), (2.2) we know on S the values of the magnetic
field H and its normal derivative, as well as the coefficient of the singular part of
Hx,t):

oH
H|S:g(x7t)7 % S:h(ﬂf,t), OZH|8Q:O/H(5C)' (219>

Problem 2.3. Given the functions g(z,t) and h(x,t), and oy (z), we are required to
find p(x) on Q.

For fixed numbers ¢y > 0 and d > 0 denote by A(qo, d) the set of functions (&g, k, p)
satisfying the following conditions:

(1) suppp(z) C €, supp (sofx) — 1) C Q,

(2) lIplleses) < qo, lleo = Llcroms) < qo and [|k — 1fcapo,e0) < Go-

The solution to the direct problem satisfies
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Lemma 2.3. For every Ty > 0 there is a positive number g5 = q5(1o) such that for
every (o0, k,p) € Aqo, d), qo < ¢, we can express the solution (E, H) to (2.1)-(2.2) in
the domain

K(Ty) ={(z, )| 7(x) <Tp, 0 <t <Tog —7(x)}

B, 1) = ap()o(t — 7(x) + Be()bo(t — m(z))
s (@)0u(t — 7(2) + B, 1),
H(x,t) = ap(e)o(t — 7(2)) + Bu(r)0o(t — 7(x))
Ty (@)0y(t — T(x) + H(z,t), (2.20)

where §(t) is the Dirac delta-function and 0y(t) is the Heaviside function: 0y(t) = 1 for
t >0 and 0y(t) = 0 for t < 0, while 6,(t) = t0u(t). The coefficients ag, fr, Y& and
ag, Bu, yu are smooth functions of the spatial variable x. Furthermore,
ap € C¥3(D(Ty)), ay € C}DM(Ty) U D™ (Ty)),
fr € CY(D(Ty), B e C*(DM(Ty) U D™ (Ty)),
e € CYD(Ty)), ~vm € CHD™(Ty) U D™ (Ty)),
D(Tp) = {z|r(x) < To}, D' (To) = D(To) N {x|x1 > 0},
D_(To) = D(To) N {£U| r < O},
while the functions E(:c,t) and f](a:,t) along with their partial derivatives with respect
to t are of class H*(X(Ty, t0)), X(To,te) = K(Tp) N {{x,t)|t = to}, to € (0,Ty], and
vanish identically for t < 7(x). Moreover, there exists a positive constant C' such that
for all go < ¢} we have

lap(z) — ay(@)| < Cqo,  [Be(@)| < Cqo.  |ye(@)| < Cqo,  a € D(Tp),
|E(x,t)| < Cqo, |Ei(z,t)] < Cqo, (2,t) € K(Tp), (2.21)

(@) = oy (@) < Cgo, [Bu(@)] < Coo, Iyu(@)] < Cao, w € D(Th),
|H(x, )| < Cqo, |He(z,t)] <Cqo, (x,t) € K(1p). (2.22)
Here, o%(x) = —e3/2 and o%(x) = (ea/2)sign(x1).

The main result here is the following theorem on the stability of the solution to the
inverse problem 2.3.

Theorem 2.2. Suppose that (g, k,p;) € Mqo,d), 1 = 1,2, while ¢*(x,t), h*(z,t) and
oy laa(x) constitute the Cauchy data corresponding to the solution to (2.1), (2.2) for
p = pi(x). In addition, suppose that ) lies in a Riemannian ball of radius p and

T > 4p. (2.23)
Then there are positive numbers qf and C such that for all qo < g} we have
oy = palliue < C (gl = 07l + I0E = IR
ok — o3 o + 18k — Bilkeen ) (224)

Here () = ¢*(x, 7(x) +0), i =1,2.
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Theorem 2.2 implies the uniqueness theorem

Theorem 2.3. In the hypotheses of Theorem 2.2, suppose that the Cauchy data cor-
responding to two solutions to (2.1), (2.2) for p = ps, i = 1,2, coincide: g* = ¢?,
h' = h?, and al|eq = a%laa. Then there is a positive number ¢ such that for qo < ¢
we have p1(x) = pa(x) in Q.

Proofs of the Lemma 2.3 and Theorem 2.2 are given in [19].

3 Inverse problems for the viscoelasticity equations

Wave propagation in modern composite materials is described by the integrodifferential
equation

plx)uy — Lu = F, (3.1)

where u = (uy,us,u3) is the elastic displacement vector, p(z) is the density of the
medium, x € R ' = (Fy, Iy, I3) is the force vector, and the operator L = (Ly, Lo, Lz, )
is defined by the equalities

doi(u) .
Lu—z ax] . i=1,2,3,

Ou(x, 1) 8uj(:c,t)>
+

L

t

+ / {p(az,t — s)didivu(z, s) + q(x,t — s) <8u"a(§j’ ) + auja(ji’ S)ﬂ ds,

-0

i,j=1,2,3.

In these equalities d;; is the Kronecker symbol, while A(x) and p(x) are the elasticity
moduli, and the functions p(z,t) and g(x,t) characterize the viscosity of the medium.
In what follows, we assume that A(z) + p(x) > 0, pu(z) > 0 and p(z) > 0.

- M) + 2pu(x) ()2
) = () e = (53)

be the speeds of the longitudinal and transverse waves respectively and let 7,(x,y) and
7s(x,y) be the geodesic distance corresponding the Riemannian metrics

|dx|
o)
Suppose that both Riemannian metrics are simple, i.e., that every pair of points x and

y can be joined by a unique geodesic I'y(x,y) and I's(z,y). In what follows, we will
be interested in the problem of determining the functions p(x), A(z), u(x), p(x,t) and

|dz| = \/d:c% + dx3 + dai.

59
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q(z,t) from a given information about the family of solutions to some direct problems
for (3.1). The inverse problems of determining the kernels p(x,t) and ¢(z,t) in (3.1)
(or only the kernel p(x,t) in the case when the system of equalities is replaced by a
single scalar equation) under the assumption that p(z,t) and g(x,t) are representable
in the forms p(z,t) = ki(t)po(x) and q(x,t) = ko(t)qo(x), where ki(t) and ko(t) are
given functions, while po(x) and go(x) are unknown functions whose support lies in
some compact domain were studied earlier in [8, 10, 28|. For the first time a two-
dimensional inverse problem of recovering kernel p(x, t) of the forms p(x,t) = k1 (t)po(x)
under the agssumption p = 1 was considered in [8]. In this paper, it was assumed that
two solutions of the Cauchy problem related to a scalar equation, that corresponding
2D case, with two different and nonzero initial data were known on boundary of a
compact domain for a sufficiently large time interval [0,7]. The Hélder type stability
estimate was found for this inverse problem. The similar inverse problem with a single
observation was studied in [28]. In [10] stability estimates were found for a solution
to the inverse problem of determining two kernels in the system of elasticity equations
with the known density and elasticity modulus. In these cited above tree papers the
method of Carleman estimates, introduced for inverse problems by A. Bukhgeim and
M. Klibanov [9], was used. Unfortunately, an inverse problem with nonzero initial data
can not be use in practical applications because if we can not produce measurements
inside a medium, we do not able measure and nonzero initial data. To avoid this, we
consider below equations (3.1) with zero initial date:

U|t<0 =0 (32)

and study some inverse problems for equations (3.1), (3.2) in 2D and 3D cases with
many or single obsevations following (20, 21, 22, 23, 24, 26].

3.1 2D inverse problems
Consider the equation

Lu = p(x)ug(x, t) — div| p(x) Vu(z, t) + /p(a:,t — $)Vu(x,s)ds| = F(x,t) (3.3)

—0

for the function u = u(x,t), * = (x1,x2), (x,t) € R®. The function p(x,t) characterizes
the viscosity of the medium, and the integral operator describes the influence of the
prehistory on the process of propagation of elastic waves which is caused by an applied
given force F'(x,t). Equation (3.3) appears in the theory of viscoelastic bodies whose
properties do not depend on x3. Then the third component of the displacement vector
us = u(x,t) satisfies to equation (3.3). Suppose that the u(z,t) is a solution to (3.3)
satisfying the initial condition

ultco = 0, =€ R (34)

Given p(x), u(x), p(x,t) and F(z,t) , problem (3.3), (3.4) of determining u(x,t) is well
posed in suitable function spaces. Call it the direct problem. In what follows, we will
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be interested in the inverse problem of determining p(x), p(z) and p(z,t) from a given
information about the family of solutions to direct problems. Assume that p(z,t) has
a special structure; namely, p(x,t) is representable as the product of two functions

pla,t) = k(t)po(x), (3.5)

in which k(t) € C?[0,c0) is defined and satisfies the equation k(0) = 1, whereas po(z)
is unknown. Furthermore, assume that p(z) and u(z) are positive everywhere in R?
and different from given positive constants py and g respectively only inside the unit
disk D = {z € R?||z| < 1}. More exactly, assume that

supp ((p(x) — po), (u(x) — po), po(2)) C D. (3.6)

In the sequel, we will also make some assumptions about the smoothness of p(x), u(x)
and po(x) as well as the regularity of the field of geodesics connected with (3.3).

3.1.1 An inverse problem with many observations

Let F(x,t) have the form

F(x,t) =0(x - v(y) — 1)o(t), v(v) = (cosyp,sinyy), € |0,2x], (3.7)

where 6(t) is the Dirac delta-function and 1) is a variable parameter of the problem. In
this case we denote the solution to the direct problem (3.3), (3.4), (3.7) by u(z,t,v).
Denote the boundary of the unit disk D by dD = {x € R?||z| = 1} and put

oD ={xe€dD|x-v(®) >0}, I_D={xedD|x-v(y) <0}

Inverse problem 3.1. Suppose that, for a sufficiently large number T" > 0 (see (3.12)
below) w(x,t,%) is known for all (x,¢,¢) € B(T) ={x € d_D,t € |0,T],¢ € [0,27]}:

u(z, t,) = f(x, t,¢), (x,t,¢) € B(T). (3.8)

Given f(z,t,%), find p(x), u(z) and po(x) in D.
Denote by c(z) = cs(z) = p(x)/po(x) the propagation speed for shear waves. Let
7(x,%) be the solution to the Cauchy problem

|V$T(:’U7¢)|2 - C2(f1,'); T|$~V(1/)):1 - O) (39)

i.e., 7(x,1) is the distance between a point x and the straight line £ - v()) = 1 on the

plane of the variables (£1,&;) = £ in the Riemannian metric dr = /(d&3 + d€2)/c(€)

Suppose that the metric is simple in D. Denote by Q(m, M) the set of the functions
(p(x), u(x), po(x)) satisfying the following conditions for fixed positive m, M:
Ho<m<plx) <M, 0<m< pu(z) <M for all z € R?,

2) supp (p(x) — po, p(x) — pio, po(x)) C D,

3) p(x) € CYD), u(z) € CU(D), po(x) € C*(D).
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The equation ¢t = 7(x,7)) defines the front of a wave propagating from the source
given by (3.7). In a neighborhood of this front, the solution to (3.3), (3.4), (3.7) has
the form

U(%tﬂb) - A(%@b)@ou - T(%lb))
+B(x, )0, (t — 7(x, 7)) + vz, t, ), (3.10)

where 0y(t) is the Heaviside function, the function 6,(t) is defined by the equality
01(t) = tby(t) , and v(w,t,¢) is an infinitesimal of higher order than (¢t — 7(x, %))
and v(x,t,%) vanishes for ¢t < 7(x,%). In whole, the fact is known for hyperbolic
equations; in application to the specific problem, it was used and established in [20, 23]
for p(x) = 1. For getting relations for determining A, B, and v(z,t, ), we must insert
(3.10) in (3.3) and equate to zero the coefficients at §'(t — 7(x,%)) and 6(t — 7(x,v)).
Here we have used (3.10) to reduce the initial inverse problem to another problem. As
a consequence of (3.10) the function f(x,t,%), defined in the inverse problem, admits
the representation

f(%t;lb) - A(%w)eo(t_T(%w)) .
+B(3§,¢)(91(t—7($,¢))+f($,t,¢), (311>
in which f(z,t,4) is an infinitesimal of a higher order than (¢ — r(x,¢)) and f (2, ¢, )
vanishes for ¢ < 7(x,v). Suppose that
T > sup sup 7(x,7). (3.12)
Y€E[0,27]| x€0-D
Then f(x,t,7)) defines 7(x,v), A(x,v) and B(x,7) uniquely for all x € 9_D and
¥ € |0, 27]. The formulas for their calculation look as

r@,0) = sup{r}, {7} = {r €R|[(@,t,) S0,ift <7},
Aw) = lm f@t), By = lm ety (313)

t—7(2,9)+0

In this connection, we can consider the reduced statement of the inverse problem: The
functions 7(z,v), A(x,v) and B(x,) are known for all (x,¢) € T =: {(z,¢)|z €
d_D,yp € [0,2r]}; find p(x), p(x) and po(z) in D. Below, we will see that this problem
decomposes mto the three Consecutwely solved problems:

(1) find c(z) = /plx)/p(x) from 7(x

(2) given C( ) and A( ), ﬁnd pla ) ( )/ (x);

(3) given c(z), p(x) and A(z, ), B(%w), find p(x).

The first problem is the familiar inverse kinematic seismic problem. Two other
problems lead to a linear problem of integral geometry on the family of geodesics of
the Riemannian metric dr = |dz|/c(x). Moreover, for determining p(z) in D in the
third problem the necessity appears of solving a boundary value problem for some
second-order linear equation of elliptic type with Cauchy data on 9D. A solution to
each of these problems is unique (see below). This implies the uniqueness theorem:

Theorem 3.1. Suppose that (pk, ok, pr) € Qim, M) and fi(x,t,v)are the data (3.8)
corresponding to solutions to (3.3), (3.4) for p = pr, 1 = tk, p = pok, k = 1,2, and
condition (3.12) is fulfilled. If, moreover, fi(x,t,%) = folx,t,9); then p1(x) = pa(x),
pa(z) = pa(x) and por(x) = poa(z) for allz € D.
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Below following [24], we give some formulas for finding the amplitude coefficients
A(x,) and B(z,1). Basing on these formulas, we justify the decomposition of the
initial problem into the above three simpler problems and give stability estimates for a
solution to the inverse kinematic problem and the problem of integral geometry from
which the uniqueness theorems for solutions to the corresponding problems follow as
easy consequences. In fact, the contents of this subsection defines an algorithmic
procedure for constructing the solution to the initial inverse problem.

1. At first, we give formulas for finding A(z,%) and B(x,). The assumptions
about the coefficients of (3.3) imply that, for every triple of the functions p(x), u(x)
and po(x), there exists d € (0, 1) such that, in Dy = {x € D||z| > 1—d}, the coefficients
are constant: p(z) = po, p(x) = po, po(x) = 0. Let Gq = {x € R?|z - v(¢) > 1 — d}.
Then (see [24])

B(xz,¥) =0, x € Gq.
Moreover, in G = {z € R?|z - v(¢)) < 1} formula for A(z,) has the form

AO 0
Az, ) = ﬁ exp (a(2)),

atw) =5 [ [0 - div@©VrEun]dn e @

where ['(x,v) is the geodesic passing on the plane of &;,& through a point x and
orthogonal to the straight line £ - v(¢)) = 1, while dr is the element of the Riemannian
length. Here A(z,7) € C?(D) for every fixed ¥ € [0, 27]. Moreover, A(x,)) is positive
everywhere. The function B(x,1)) is calculated in G by the formula

Bla.w) = —5 A [ [Ceon +h©)]dr (3.15)

INCRYD)

where

C(z, ) = pa)[p(x) — div(c*(2)Vr(z,¥)) — K (0)]
+div[e*(@)p(a) Vr(z, )] — div|c*(z) Valz, )]
—(@)|Valz, )|, (3.16)
]

h(z) = div[e*(2)Vg(@) +C( HVQ(H2

= div[e*(2) V(v p(x))]/ v/ ol (3.17)

and g(x) = Iny/p(x).

2. Decomposition of the Initial Inverse Problem.

The formulas given above and (3.9) imply the decomposition of the initial inverse
Problem 3.1 into three separate problems to be solved consecutively. Write down their
more detailed statements.

Problem 3.1.1. Find c¢(x) = /u(z)/p(x) inside D from 7(x,v), (z,¢) € T, T =:
{(z, )|z € 0_D,y € [0,2x|}. The function 7(x,7) is a solution to (3.9). This
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problem is nonlinear. The stability estimate to the problem given below, imply the
unique solution. Let {(pg, tg, pox) € Q(m, M), k = 1,2. Denote cx(x) = /() /pe(z),
k = 1,2, and introduce

Then [24]:
IellLzpy < ClF |l (3.18)

where C' = C'(m, M) is a positive constant.
Once c¢(z) has been found, I'(z,%) and 7(x,%) become known for all z € D. Now,
consider the following problem:
Problem 3.1.2. Given c(x) and A(x,?) for (z,¢) € T, find p(x) = po(x)/u(x).
Use (3.14). Put x € 9_D. Then p(x) = po and

/ §E) dr — gu(a,y), () €T, (3.19)

INCRYD)

where the right-hand side is the known function

g1(z, ) = 2(In A(x,¢) — In Ag) + / div (c*(&)VT(&, ) dr

Thus, the problem is reduced to a linear problem of integral geometry: find the inte-
grand from its integrals along a family of known geodesics. An estimate of the stability
of this problem is given by the formula (see [24]):

/p )da < __//891 W 8g1(a(¢) ) 4 i, (3.20)

D

where x(p) = (cosp,sin ). Since the problem is linear and, by (3.20), p = 0 corre-
sponds to g (z(p),7) = 0, a solution to the problem of integral geometry is unique.
Problem 3.1.3. Given c(z), p(x) and A(z,v), B(x,¢) for (z,v) € T, find p(x)
inside D.
In this case use (3.15) on putting x € d_D therein. We obtain

/ h(¢ 1), (x,¢)eT, (3.21)

in which

Bz, ¢) / -
= -2 — C d
92(55%5) A(il?,@b) (€7¢)) T
and C(x,1)) is defined by (3.16) and is known for all values of variables. This implies
that, finding h(x) in D, we come to an identical problem of integral geometry as before.
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If it is solved and A(z) is found then (3.17) implies a linear equation of elliptic type for

Volw):
div[c®(2)V (\/p(x))] — h(z)\/plz) =0, =€ D.
By hypothesis, p(z) on the boundary of D satisfies the boundary condition
plx) =po, Vplx)=0, xe€dD.

It is known that a solution to an elliptic equation with Cauchy data on the boundary
of a compact domain is unique. Therefore, a solution to Problem 3.1.3 is also unique.

Thus, the totality of the facts about the uniqueness of a solution to all above
problems implies the uniqueness theorem for a solution to the initial boundary value
problem.

3.1.2 An inverse problem with single observation

Assume that the density of the medium is the constant p = 1 and p(z) is a given
positive function p(x) > po > 0, and p(z) = 1 outside 2. We assume also that p(x,t)
can be represented in the form

plz,t) = k{t)u(@)po(z), (3.22)

where k(1) is a given function such that k(0) = 1, while py(x) is the unknown function.
We suppose that the support of po(z) lies in an open compact domain 2 C R? with a
smooth boundary 9. Consider a solution of (3.3) with function F'(z,t) of the form

Fa,t) = 6(z1)o(1),

and zero initial data (3.4). Assume that the trace of the solution to problem (3.3),
(3.4) and its normal derivative are known on some finite piece S C (92 x R) of the
lateral boundary of @ = Q) x R,

uls = g(x,t), g—z T h(z,t). (3.23)
Below we give a more exact description of S.

Problem 3.2.1. Given g(xz,t) and h(z,t) find po(x)in €.

We assume that the line x; = 0 has no an intersection with €. Let, for a definiteness,
Q lies in the half-plain z; > d for some d > 0.

Note the physical sense of the functions ¢ and h which present data of the inverse
problem. The function g(z,t) is the thirs component of the displacement vector, while
h(x,t) is expressed via the normal stress o3, at J€. Indeed, if uy = uy = 0 in (3.1)
(that correspond the case when Fy = Fy, = 0), then for component of the stress tensor
on 0f) the equalities o3; = pdu/dx;, i = 1,2, 033 = 0 take place. From these equalities
follows that du/dn = o3,/ on Of).

Here, we obtain a stability estimate for the inverse problem. It based on the method
proposed in [16]. The essence of it is concluded in a construction of some amplitude
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relations on the characteristic surface t = 7(x), where 7(x) is the solution to the Cauchy
problem

2 L
V()| = ler—0 = 0, (3.24)

and obtaining a priory estimates for the solution to (3.3) with data (3.23).

Define S = S(T) as S(T) = {(z,t) € (IUxR)|7(x) <t < T+7(x)}, where T is an
positive number. Assume, that the Riemannian metric dr = +/(d2? + dx2)/u(z) has
non-positive curvature in 2. The sufficient condition of it is fulfilment of the following
inequality (see section 4):

Alnp(z) <0, xe€Q.

Let, moreover, £ be convex with respect to geodesics of the metric. Then an arbitrary
pair of points x and y can be joined in ) by an unique geodesic.

For fixed numbers ¢ > 0 and d > 0, denote by A(qo, d) the set of functions (ug, p),
satisfying the following conditions:

(1) supp(po(), p(x) — 1) C Q, info 7(2) > d,
(2) llpoller @) < go, I — 1||cw < qo, Ik = Tlcroee) < qo-
For the solut1on to the direct problem (3.4), (3.4) the following lemma holds.

Lemma 3.1. For arbitrary Ty > 0 there exists qo(1y) > 0 such that for any (i, po) €
Aqo(1Tp), d) solution to (3.3), (3.4) is represented in K(1o) = {(x,t)|0 <t <Ty—7(x)}
as

u(z,t) = ag(x)0o(t — 7(x)) + ar(x)01(t — 7(2))
+ag(x)0s2(t — 7(2)) + v(x, 1), (3.25)

where 0q(t) is the Heaviside function, while 0,(t) = t0u(t), 02(t) = t?04(t)/2. The
coefficients ap(x), ar(z) and ay(z) satisfy in {x € R?|xy < d} the conditions

o) — % (@) — 0, as(a) =0, @1 <d (3.26)

Outside of this domain ag(x) is defined by the formulae

1 1

o) = 3o (pla)), ele) =5 [ @ - divu@VrE)] . @21

I'(z)

Here, I'(x) is the geodesic concluded on the plane &1, & between x and the line & = d,
which it intersects orthogonally, dr is an element of the Riemannian length. The
coefficients ay(x) and as(x) are solutions to the following Cauchy problems:

2u(x)Van(z) - Vr(z) + ar(@)[div(p(z)Vr(z)) —p
—div[p(x)Vao(x) — po(x)p(z)on(2) V()]
+po(@) (@) Vao(w) - Vr(z) — K (0)ao(x)] =0, ails,—a =0, (3.28)

S
~
=
N
=
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2u(z)Vas(x) - Vr(z) + az(x)|[div(pu(z)Vr(x)
—div (@) Ven(2) = pol@)p(a)lon (2)Vr(
—Vao(x) + K (0)ag(2)VT(2)]

(

— po()]

—ay(x)) — k"(O)ao(x)} —0, aslyq—0. (3.29)

Functions oy, € CY2H(D(Tp)), k = 0,1,2, D(Ty) = {z|d < 7(x) < Ty}, while
v(x,t) vanishes for t < 7(x). Functions Div(z,t), j = 0,1,2, DI = 97/0t belong
to CYI(K (1)), K(Ty) = {(z,t) € K(Tp)|t > 7(x)}. Moreover, there exists a positive
constant C such that for all go < qo(Th) the following inequalities hold:

[awo () — 1/2||cl7<D<TO)) < Cuqo,
||O[k($)||cl772k< < Cqo, k=1,2,
1DIo(x, )| ersxmy < Cdor 5 — 0,1, 2.

The proof of this Lemma is given in [23]. The main result which proved therein is
the following stability theorem.

Theorem 3.2. Let (i, pox) € Mqo,d), k = 1,2, while (gx, he) be the Cauchy data
corresponding solutions to (3.3), (3.4) for p(x,t) = k(t)pox(x). Letl, moreover, ) is
contained in some Riemannian circle of the radius p and the condition T > 4p holds.
Then there are exist positive numbers ¢ and C' such that for qo < ¢} and arbitrary
(o, pe) € Aqo, d), k = 1,2, the following inequality valid

2
Ipor = Poallinge, < [Z(HD g1 = 92) sy + 10700 = ha)llEags) )

HM

) I1DY (g1 = 92)l1E2s,)

5=0
in which D] = 87/0t7, Sy = {(x,t) € S|t = 7(z)}.
As a corollary, we obtain the uniqueness theorem.

Theorem 3.3. Let the conditions of the previous theorem be satisfied and g3 = ¢s,
hi = hy. Then there exists go > 0 such that for any (u,po1) € Ao, d) and (u, po2) €
A(qo, d) the equality po1(x) = poa(x) holds in Q.

3.2 3D inverse problem

In what follows, we will be interested in the problem of determining the functions
Mz), p(z), p(z,t) and g(x,t) from a given information about the family of solutions
to some direct problems for (3.1). We will assume that p(x) is a given function (for
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example, a given constant). The inverse problems of determining the kernels p(x,t)
and ¢(x,t) in (3.1) under the assumption that p(z,t) and ¢(x,t) are representable in
the forms p(x,t) = k1(t)po(z) and g(x,t) = ka(t)qo(x), where ki(t) and ko(t) are given
functions, while py(z) and go(x) are unknown functions whose support lies in some
compact domain were studied earlier in [10, 21]. Here no special form of p(x,t) and
q(z,t) is assumed. The constance of this subsection is based on the paper [26].

Formulate the posing of the inverse problem under consideration. Suppose that, in
(3.1), the function F' has the form

F(z,t;y) = fP9(x — y, 1), (3.30)

where y € R? is a point, a parameter of the problem, §(x — y,t) is the Dirac delta-
function, and f° = (fY, /2, f9) is the numerical vector characterizing the direction of
the force concentrated at the point (y,0). Let u(z,t;y) be a solution to (3.1) satisfying
the condition (3.2). Assume that, for some ¢ € (0, 1), outside the domain B, = {x €
R3||x| < 1 — &}, the functions Mz), p(x) and p(z) coincide with given constants Ao,
(o and po respectively and Ag + po > 0, o > 0, po > 0, and the functions p(x,t) and
q(x,t) are identically zero for x outside B. for every ¢ > 0.

Statement of the Inverse Problem. Suppose that, for some positive number T > 0,
the function (x,y,t) € D(T), D(T) = {{x,y,t)| (x,y) € (0By x dBy),t € [0, 7s(x,y) +
T),}, 0By — {x € R¥Ja| — 1},

w(z,ty) = fla,y,t), (2,y,t) € D(T). (3.31)
From a given function f(z,y,t), find A(z) and p(z) in B, and p(x,t) and ¢(x,t) in
B. x [0,T].
For a homogeneous medium, when p, A, and p are constant, p = ¢ = 0, problem
(3.1), (3.2) was solved by Love [11]. Its solution is given by the formula

0

u(a:,t,y) — m6<t—7's($,y)>
+$Vdiv{ P [91 (t — Tp(as,y)) — 0 (t — Ts(gj)y))] }7 (3.32)

where 01 (t) = t0y(t) and 0y(¢) is the Heaviside function.
Introduce an infinite system of functions that were obtained from the Heaviside
function by the consecutive integration or differentiation:

t* d* k—1
Ok(t) = 300(t), k= 1,2, Ok(t) = —00(t) = SV, k=1,2,....
Note that the functions of this system satisfy the equality 0,.(t) = 0r_1(t) for each
k = 0,£1,+2,.... For a homogeneous medium in which p = p(y), ¢, = ¢,(y) and

cs = cs(y), we can represent (3.32) as the finite ray expansion

1

w(ety) = > |a®0 () 0ult - 7, 1))

k=—1

o) (x,y) Okt — ms(z,y)) |, (3.33)
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in which the coefficients a®*?)(x, %) are calculated by the formulas

A=) (g, ) = — (f° - Vyr(z, y))Vr(z,y)
’ Amp(y) cp(y)7p(2, )
a(o,p)(x y) = V(2 y) X x (fxV yTp(T,y)) — 2(f° - V72, y)) V7, (2, y)

1m0ly) G ) e
a(l,p)(x y) = Vrp(,y) X (f X Vymp(a,y) = 207 - Vynp(@, 9)) V1 (2, y)
’ Anp(y) ¢ (y) 75 (2, ) ’
and the coefficients o'®*)(z, y) are computed by the formulas
(—1,s) _ _VTs(x7y) X (fo X VyTs(xyy))
oy i)y
a0 (z,y) = 2(f7 - Vyrs(2, y) Vs, y) — Vsl y) x (f° x VyTs(x,y))’ (3.35)

Amp(y) cs(y )Tf(x,y)
OZ(l’S)(CU y) _ 2(f0 ’ VyTS(QS,y))VTS( 7y) )
’ Amp(y cs(y)TE’(%y)

By the above assumption that the medium is homogeneous in some neighborhood of
the source, the solution to (3.1), (3.2) coincides with its solution for a homogeneous
medium in a sufficiently small neighborhood of (y, 0). In [27], we established an infinite
asymptotic expansion of the solution to (3.1), (3.2) for an inhomogeneous medium
similar to (3.33). The assertion is given as Lemma 3.2 below. This expansion is an
“expansion with respect to smoothness” (the term is due to V. M. Babich [4]) in a
neighborhood of the characteristic cones t = 7,(x,y), t = 75(x, y) and is a basis for the
study of the above-posed inverse problem.

We say that the set of functions p(x), A(x), u(x), p(z,t) and g(x,t) belongs to P,
(p, A\, i1, p,q) € P, if the following hold:

(1) p(z), u(z) and Mz) + u{z) are positive functions for x € R* and coincide with
positive constants po, fo, Ao + po outside the domain B, = {x € R?*||z| < 1 — &},
€ (0,1);

(2) the functions p(x), u(x), A(z) and p(x,t), g(x,t) are infinitely differentiable with
respect to their arguments for all x and ¢;

(3) for all t € [0,7T), T > 0, the supports of p(z,t) and g(x,t) are included in B,
and supp(p(z) — po, A(@) — do, p(x) — po) C Be;

(4) the metrics dr, = |dz|/cy(x), dry = |dx|/cs(x) are simple in @ € R?.

Introduce some additional notation. Let a = (o, as, a3) be a vector depending on

the space variables x and y and let 7 be a scalar function of these variables. Denote
by rij(a,T) the complex functions of z and y defined for 4,7 = 1,2,3 and integers m
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by the equalities

or or
Ao ) = =Ma)dyla V) = u(x)(ai% oy axi)’
J 7
da; Oy
Hz’lj(OZ;T) = )\(Lt)éz]dIVO[ +M(Qj)(aj] + aij)

2 )

—po(x)di(a - V1) — golx) (aia J 7.

80@ ﬁaj
9z, ax,.)

or or
—P(m-1)(@)di5 (- VT) = gm—1)(@) (ai% + %'%), m > 2,(3.36)
7 i

Ky (o, ) = P(m—2)(33)5¢jdivoz+Q(m_2)(:c)(

in which

Ip(x,t) ~I™q(x, 1)
Pml®) =g |y ) = T |y
Let QP and Q™% be the vector functions whose components an’p ) and QE”’S>, —
1,2,3, for n = 1,2,... are calculated by the formulas
3 ntl
(n.p) m n—m, an d m—1 n—m,
Q" = - Z [’%’(04( p)’Tp)ﬁ—a:j - %jf%’ (o p>;7p)},
j=1 m=2
3 nitl
s 75 . _
Qg ) = [/@T(a<”_m’s>,7's)—7— — g (o™ m’s>a7's)} (3.37)
- J 8xj 8xj J
7=1 m=2

Assume that Q®? =0, Q% = 0. Denote by
Cp - ( f)Cg))Cg) - —cf,(y)Tp(as,y)VyTp(x,y),
¢ = (Clsa (3 C?f) - —ci(y)rs(a:, y)vyTS(xﬂ y)

the Riemannian coordinates of a point x with respect to y in the metrics dr, =
|dx|/cp(x) and d1s = |dx|/cs(x), respectively and designate as

Jp(,y) = det <%> , Jo(x,y) = det <aai>

the Jacobians of the transformations from the Riemannian coordinates to the Cartesian
coordinates. Define a scalar function A® (z,y) and a matrix T (z, ) by the equalities

Jp(,y) 1 Po(§) + 2q0(&)
AP (3. 4) = P exp | = sl S g |, (338
(@9) dnry (2, y)c2(y)v/ p(x) p(y) P QF - A(§) + 2u(8) 339
Sz, y)v/ Js(x,y) 1 q(§) ,
T (&, y) = exp | = dr! 3.39
e S N/ LA & I 339
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In these equalities € is a variable point of the geodesics I'y(z,y) and I's(x,y), respec-
tively, 7, = 7,(§,y), ¢ = 7(§,y) and S(z,y) is the matrix exponent:

S(z,y) = exp / (VI (€)' de §

Ts(z,y)

in which (VInc,(£))" is a column vector and d¢ = (d&;, dS,, d€s) is a row vector, and
their multiplication is carried out by the rules of matrix algebra.

Lemma 3.2. Suppose that (p,\,u,p,q) € P, y € dBy. Then the solution to (3.1),
(5.2) is representable as the asymptotic series

u(ety) = D 0B, ) 0t - 7, ))
+a®9 (z,9) 0.t — To(x, 1)) |, (3.40)

in which o\*?) (z,y) and o'**)(x,y) are functions of class C* RO\ {(y,y)}) defined by
(3.34), (3.35) for |v — y| < e and calculated for |x — y| > ¢ by the formulas

oz, y) = cp(@)[AMP (2, y) V7 (2, y) + V(2 y) x BB (2,y)],
O[<k7s) (377 y) = Cg (x)[AUC’S) (ZU, y)VTs(xy y) + VTS (ZU, y) X B<k7$) (ZU, y)]’
in which
ATz, y) = = ([0 Vymp(a, ) AP (2, y), BTW(r,y) =0, (3.41)
B (@, y) = —(f0 x Vyrlw, )T, y), AT (a,y) =0, (3.42)

and the subsequent coefficients are computed by the recurrent formulas

A” Y2 (& (2, y), y) ROP(Ey)
A(n=1p) x,y) = P + / 7d7' AW®) z,y), n>1,
)= A&, p).0) D(E,y) (@3]
Fp(f,ﬁp(f,’y))
A+ 2p _ _
Bp) _ p) « V7 — [uA Vu-Vr, — 21 g(n—1p)
(z,y) O\t 1) (CpQ X V1, — [WAT, + Vi Tp — GoCp ]

—Cp [QM(VTP - V)arhe) g V{((A+ u)c;1A<”_1’p>) — CglAm_l’p)Vu} X Vrp), n >0,

B (@ y) = | BT (), ) TV (Eula,y), y)

by [ ROy a0 ) > L

Fs(z,€s(z,))

{[O\+ ) divat™ ) 4 V- a7 — (pg + go)eg T ATl

s

2

A () = ﬁ

+HpA7e + Vi - Vg — qocS_Q]A(”_l’S) + [2pcs (Vs - V)a<”_1’s>
+e. V(A + u)cs_lA<”_1’s>) — ALy — e, Q)] V1), n>0.
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In these formulas §,(x,y) and E(x,y) stand for the intersection points of the geodesics
U,(z,y) and Ty(z,y), respectively, with the sphere |z —y| = ¢, the scalar function R™P)
and the vector function R™ are defined by the equations
1
RMP — = (ch<”’p) V7 — (A + )y div(e, Vi, x BOTHP))
P
+Vu - (V7 x BU=Y)Y 4 24(Vr, x B®™H)) . Vin cp]),

R = %{CSQW’S) + APTEI(A 4 2u)V Ineg, — VA = (A + ) VA9 x Vg,

moreover,
A<n_17p)(€l)(x7y)7y) _ _2(f0 ) VyTp(iU,y))[Cp(y)]n { 1’ n = 1’ 2’
®) (& (2, y), ) &, (z,y) — y|? 0, n>2
B (e, ), ) TO ) y) — - ><|Zz,;s<ya;,g>;[|is<y>r { L n=1le

Use Lemma 3.2 for calculating the auxiliary series for the function f(z,y,t) defined
by (3.31). Let

:cy, /f:cy, z, t>0.

Given x € 9By, y € 0By, x # y, put

o,y = lim fla,y ) = lim f(r,y,0).

From (3.41), (3.42) it follows that ACY) £ 0 if 0. V,7,(v,y) # 0 and BEL9 £ 0
if /%% V,7s(z,y) # 0. For every fixed y € 9By, the equality f°- V,7(z,y) = 0 is
possible only at those x € 9By that correspond to the geodesics I',(x,y) starting from
y in directions orthogonal to f°. The set of these points z forms a curve I(y) lying on
dBy. The equality [ x V,7s(z,y) = 0 is possible for fixed y € 9Bg only at the only
pointz € 9By at which the geodesic I'y(z,y) collinear to the vector f® at y intersects
dBy. At all points where

fO'VyTP(xay)7£O7 fOXVyTS(xyy)7£07

we have the equalities

(2, y) = inf{to| to > 0, [f]t:to(af,y) 7 0},
TS(gjyy) — inf{to| tO > Tp(xPy)P [f]t:to(xﬂy) 7£ O}

By the smoothness of 7,(x,y) and 7,(z,y), they are defined by these equalities for all
(x,y) € 9By x dBy. Moreover, for m = 0,1, 2, ..., the equalities hold:

amﬂa:,y,t)] —_— [amﬂx,y,t)] 19
=\ h (:U,y), =a"mmhe (St,y)

atm atm

[ t=7p(2,y) 1=Ts(z,y)

Thus, we have
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Lemma 3.3. The data of the inverse problem determine uniquely for oll (z,y) €
dBy x 0By the functions t,(x,y) and m,(x,y) and the infinite chain of the coefficients
B2 (z y) and a9 (x,y) occurring in expansion (3.33).

Note that the functions 7,(x, y) and 7,(2,y) are uniquely determined by the defini-
tion of the wave propagation speeds of the longitudinal and transverse waves respec-
tively, i.e., the definition of ¢,(x) and c,(z), and the functions a™?)(z, y) and o™ (z, )
are uniquely determined by the definition of ¢,(x) and cs(z) and the functions pg(z)
and qp(x) for all & < n + 1. Therefore, instead of the initial inverse problem, we
may consider the problem of constructing the functions c,(x), cs(z) and p(x), g (),
k = 0,1,2,..., inside B, from the functions 7,(x,y), 7.(z,y) and a'*P)(z,y), a®¥,
k=0,1,2,..., defined for (x,y) € 9By x dBy. This new problem splits into a sequence
of problems: first we can find ¢,(x) from the given function 7,(x, y) and then find cs(x)
from 7,(x,), and then recurrently find p,(2) and ¢,(z) by using the family o *?)(z, y),
ak®) for —1 < k<n-—1.

The problem of determining ¢,(x) inside By from a function 7,(z,y) as well as
cs(z) from 74(z,y) given for (z,y) € OBy x OBy was studied for R? in [5, 6, 13]. The
results obtained in these articles imply the uniqueness of the determination of c¢,(z)
and c,(z) inside By from given 7,(x,y) and 75(z,y). The so-found functions ¢,(x) and
cs(2) determine 7,(z,y) and 7(x,y) and also I'y(z,y), Jo(z,y) and Us(x,y), Je(z,y),
and the matrix exponent S(z,y) for every (x,y) € R®. Furthermore, since the density
p(x) is assumed to be defined, ¢,(z) and cs(z) uniquely determine the elasticity moduli
Az) and p(z).

Consider the problem of the determination of the functions p,(z) and g,(z) from
the family of functions o*?)(z,y) and o™ (z,y), —1 < k < n— 1, defined for (z,y) €
OBy x 0By. For n = 0, from the given functions a(=")(z,y) and =" (z,y) we
compute the functions AT (z,y) = c,(z)al"") (2, 1) - V1, (2, y) and BTV (2, y) =
co(x)a =) (2, y) x Vi (z,y) at (z,y) € 0By x dBy. Using (3.38), (3.41) and (3.39),
(3.42), we come to the equalities

pO(S) n QQO(S) /
Pp(z) AE) + 2u(8) +2u(£)d7p = 9ol y), (y) € IBox b, (343)
QO(S) /
r (g;/y) (&) dr, = ho(z,y), (x,y) € dBy x 9By, (3.44)

in which go(,y) and ho(z,y) are the given functions defined by the formulas

4| A (2, ) |y (0, y) 2 () p(a:)p(y)}

|f0 ) VyTp(CU,y” V Jp(:’U?y)

go(x,y) =2In {

x| BT (@ )l ) (y) p(a:)p(y)}.

ho x, = 2In
( y) { |(f0xvy7p(x,y))5($,y)|\/m
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The problems of constructing the function under integrals in (3.43), (3.44) are prob-
lems of integral geometry on the families of geodesics, the questions of the uniqueness
and stability of whose solutions were studied in [5, 6, 14] The results in these articles
imply the unique determination of the functions (py + 2¢o)/(A + 2u) and qo/pby the
right-hand sides of (3.43), (3.44). Since the elasticity moduli A(x)and p(x) are already
found, the functions under integrals determine the functions po(x) and go(x) uniquely.

It is proved by induction that, for any n > 1, the functions p,(z) and g¢,(z) are
defined uniquely by the coefficients a'®*?)(z,y), a**(z,y) defined on (9B, x dBy) for
all =1 < k < n— 1. Indeed, assume that the functions pi(x) and gr(x) are already
known for all k < n — 1 and on (0By x 9By) there are defined o'®*?)(z,y), o™ (z,y)
for =1 <k < n — 1. Then the known functions py(z) and ¢,(2) determine o'*?)(z, y),
a®)(z,y), =1 <k <n—2, for all (x,3) € R®. Further, from given o P (z,y) and
=19 (z,y), at the points (x,y) € 9By x 0By, we compute the functions

AL () = e (2)a " (2, y) - Vi (e, y),
B<”_1’S)(%y) - Cs(x)OZm_LS)(xay) X VTS(LU,:U)-
On the other hand, Lemma 3.2 defines formulas for their calculation via the scalar

function R"™P)(x, ) and the vector function R™* (z,y), in which p, (z) and ¢, (x) occur
implicitly. Easy calculations show that these functions admit the representations

Pn(@) + 2gn(x)
AMa) + 2u(x)

RO (g, ) = _Qn(fﬁ)B(_Ls) 2,y) - B™)(z,y),
() = =SS BT g) + ROy

R () = — AT (@ y) + RO (2, y),

where RP)(x,9), R™)(x,y) and R™)(x,y), R™(x,1) depend only on p.(x) and
qr(x) for k < n —1 and a®?)(z,y), a®(z,y), (x,y) € RS, for —1 < k < n—2, and
hence are known. Therefore, we arrive at the inequalities

Pul§) + 2q,(6) dr

I RICEETCI 9al@,y). (@,9) € OBo x OBy, (3.45)
/ Qn(é:) dTSI - hn($,y), (Jf,y) - 8BO X 330, (346)
. (&)

in which g¢,(z,y) and h,(z,y) are the given functions defined by the formulas

2
uTp(,9))]

A(n—lyp) (Jf,y) A<n_1’p>(€p($7y)7y)

AP (2, y) AW (2, y),y)

. RO, y) de]
240 (g, y) 7]

Fp(m,ﬁp(m,y))

gn(xay) - |(f0v




Inverse problems for equations with a memory 75

2
(SO x Ve, y))S (2, y)]

_B<n_178) (58 (ZU, y)) y)T<S) (Ss(ﬂf, y)’ y)

1

=3 / ROE,y) T (€, y) dr].

Fs(2,€s(2,v))

ho(,y) = B9 (2, )T (2, )

In deriving (3.45) and (3.46), we have involved the fact that p,(z) = g,(x) = 0 on
the parts of the geodesics I',(z,y) and I's(z,y) that belong to By \ B.. The appearing
problems of constructing solutions to (3.45), (3.46) are quite similar to the problems
of integral geometry for po(x) and gq(x). This implies the uniqueness of their solution.
Thus, we have

Theorem 3.4. Let (p, A\, i, p,q) € P. Then (3.31) uniquely determine functions c,(x),
cs(w) and O p(a, 1) /Ot* |0 = pi(x), 9*q(w,1)/0t*]1—0 = qi(2), k = 0,1,2,..., in B.

Theorem 3.4 implies as a corollary a uniqueness theorem for a solution to the inverse
problem.

Theorem 3.5. Suppose that (p, A\, 1, p,q) € P and p(x,t) and q(z,t) are analytic
functions with respect to t for t € [0,T), T"> 0. Then (5.31) uniquely determine the
functions c,(x), cs(x) for x € B: and p(x,t), ¢(x,t) for (x,t) € (B: x [0,T))

Note that when p(x,t) and ¢(x,t) are polynomials in ¢, for their construction, it
is required to find only finitely many functions pg(x) and gx(x). For calculating these
functions, it suffices to use the finite ray expansion of the solution to (3.1), (3.2). For
this it suffices that the coefficients of (3.1) have finite smoothness.

4 Appendix. Sufficient conditions of non-positivity of
a curvature for the conformal Riemannian metric

We derive here a formula for the sectional curvature of the conformal Riemannian
metric and clear the question when this curvature is non-positive. Let x € R*, n > 2,

and o
ds® = gy (x)dx’da’. (4.1)

Above and hereafter we use the Einstein summation convention. The Levi-Civita
connections of the Riemannian space coordinated to metric (4.1) are determined by
the following formula (see, for instance, formula (94.9) in [1])

1 dgua | Ogn  Ogij
P — — P r_ 2 4.2
* 29 (83:] + 8:6, 83:; )’ ( )

where (¢%7) is the inverse matrix to (g;;). Components Ry; of the curvature tensor are
calculated then as follows (formula (110.4) in [1])

Rigiy =

1( 829@' % qu; 82% n % i

- _ _ rerd 12 19y, 4.3
2\0xdx;  Odwgdr;  Oxdwy 83:183:j)+gpq( 137 ke b (4.3)
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Let a two-dimensional plane ¢ is given by the two orthogonal unit vectors v = (11, ..., )
and 7 = (N1, ),

g (W' =1, gyl =1, gij (@)’ = 0. (4.4)

Then the sectional curvature K(z,c) at a point z and in the given two-dimensional
direction o is determined by the formula

K(z,0) = Ruq" V'™’ (4.5)

Use formulae (4.1)-(4.5) for a calculation of the sectional curvature K (x, o) for the case
of the conformal Riemannian metric ds? = g(x)|dz|?>. We assume that ¢ is a positive
and twice continuously differentiable function in a domain . In this case ¢;; = g(2)dy;,

9”7 = 6i;/g(x), and

1 dlng dlng dlng
) 2 (61’ axj + 6]1) axz 6] axp ) ( 6)

Then relations (4.4) are g|lv|*> = 1, g|n|*> = 1, v-n = 0. Here v -7 means the scalar
product of vectors v and 7. Taking these relations into account we find

2 2, 2. 2.
( 0 gij . d gii . 0 Gkj + 0 ki )szlnkn
OxpOx;  OxiOx;  Ox0x;  Ox0%
g g % g
= (0yj——— —Oy——=—— 0 Oki tnk
( Y 92,01, dxL0x; ! 0x,0x; & 0x10%; + 0k 020z )V vy

1 9% i i 9?lng 8lng81ng i i
7_583:,'8:5]-@” o) = (8:5 0 dx; Ox; )(VV )
Png , , i
= oV )+ (Ving - v)* + (Ving - n)*
10T
Plng , | ; o 1
=— ’ ’ —|VIng|*. 4.7
axiaxj(”” +nn)+g|V ngl| (4.7)
To the other hand,
1 8lng dlng dlng ,
i1k o !
F%quynn = 1 0, djp o, — 05 o, )VU]

X

Okg

(20
( . 8lng zqaalnkg %aalnqg)u"n’“
i(VIng mi? +(Ving-v) )
X(Vlng v+ (Ving-nv )
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i 1 8lng dlng dlng ,
INANAZ ‘Vinkn? = Z(ékp 6jpa—_6kj o, )?7’“?7]
8lng dlng 8lng
% (6lq ox; o= dxy ~ O dz, )
1 1dIng
= —(2(VlI P —
4( (Ving-n)n oz, )
1dlng
e — =
x(2(Vlng 1% T ) (4.9)
From the latter formulae we obtain
Ip (LT = TR TV vy = 5pq—[( Ving- v’ + (Ving- v)y’)
(Vlng i+ (Ving - n)uq)
19dIng 1dlng
{2V 1Ing-nn? 1 -
( (Ving-myf” - g Oxp )( (Ving - v)vt Ty Oz )}
1 2 _ 2t o] 1 2
= 4[3(V1ng V)2 +3(Ving - n)? g|Vlng| } = 2g|Vlng| : (4.10)
Formulae (4.3), (4.5), (4.7), (4.10) imply that
1 &Ilng , , | o
K = —— v+ n'n). 4.11
(z,0) 2axiaxj(”” ') (4.11)

If n = 2 the latter formula can be written in a more simple form. Using that in this
case 1 = —Uy, 1)z = V7, we find

K(x) = —%Alng. (4.12)

Note that in the two-dimensional space there exists only the unique plane o, that
coincides with this space. Therefore the curvature does not depend on o. Formula
(4.12) coincides with the formula for the Gauss curvature of a surface in R? equipped
by isotropic metric ds? = g(z)|dz|* (see chapter 2, §13, Theorem 2 in [2]). The latter is
completely agrees with the theory of the curvature for the two-dimensional Riemannian
manifolds.

In the general case, it is easy to prove using (4.11), (4.12) that the sufficient condi-
tion for a non-positivity of K (x,o) can be given as

Alng > 0, n=2,

2] o
MVZV] Z O’ n Z 3. (413)
8:6,0:5]'

The manifold (€2, g) is called by the manifold of a non-positivity curvature if K(z,0) <
0 for all x € ) and any two-dimensional planes o.

It is well known [3] (Hadamard-Cartan theorem) that in any simply connected
complete manifold of a nonpositivity curvature each two points can be joined by a
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single geodesic line. The latter is also true for compact manifolds with strongly convex
(with respect to geodesics) borders. Thus, if conditions (4.13) is fulfilled for all x € Q
and the boundary 9 of the domain  is convex then any two points of  are joined
by a unique geodesic.

Related to this, we derive a sufficient condition for the strong convexity of boundary
9€) with respect to geodesics. Let the boundary given by the equation F'(x) = 0, where
F'is a twice continuously differentiable function, and F'(z) < 0 in Q. Take an arbitrary
point 2% € 90 and consider a geodesic line passing throw point 2" in a tangent direction
v, v = (. v, g (2®)rd = 1, to Q. Let s be the length of the geodesic and
s = 0 at 2°. Then an equation of the geodesic line can be presented in the parametric
form as x = x(s) = (x1(s),...,2,(s)), where the function z(s) solves the Cauchy
problem

i =—T5a'a’, k=1,2,....n, 2(0)=2" &(0)=r (4.14)

Then the condition of the strong convexity of boundary 9€) at 2° can be written as
F(x(s)) > 0 for all sufficiently small |s| > 0. The latter is equivalent to the requirement

1 o
F(2°) 4 F, (2%)ox" + ime] (z°)0z* 0" + o(]0x|*) >0, as|éx| — 0. (4.15)
Here 0z = (dxt,...,02") = x(s) — 2%, Taking into account that F'(z°) = 0, dz* =
svf — T (2)v'v7 (2 + o(s®) and F,, (%)% = 0, we find that condition (4.15) is
satisfied if

— By, (2D (@)W 4 P, ("W >0, Vu € {v] gi;(a°w'v? =1, v VF(2°)}4.16)

Hence, the border €1 is strongly convex with respect to geodesics if the latter condition
holds for all 2° € o9.
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