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1 Introduction

It is known that one of the most famous scientific and technological achievements of
the last century are the emergence of quantum theory and achievements of the field
of nonlinear optics [1]. The development of these two areas are interrelated and have
found numerous scientific and technical applications. Quasioptics is the section of non-
linear optics, where the mathematical model of the processes have found the greatest
development.

Inverse problem of determining the unknown coefficients of quasioptics often arise
in the studying of the propagation of a light beam in the inhomogeneous medium,
where the unknown functions are the refractive index and absorption of the medium,
and the initial phase of the emitted wave [1]. The indices of refraction and absorption
of the medium are included in the equation of quasioptics as the complex-coefficient
factor. Therefore, in practice, it is necessary to determine the complex-coefficients of
the equation of quasioptics.

We consider the inverse problem of determining the complex-coefficient of linear
dependent equation of quasioptics, where the real part of the complex coefficient is
the refractive index and the imaginary part is a measure of the absorption of the in-
homogeneous medium. In this paper we considered the variation formulation of the
inverse problem of determining the unknown coefficients of the equation of quasioptics.
The criteria of quality will be based by the Dirichlet-Neumann maps. This approach
is widely used and validated in [2,3] and others to determining the coefficients of the
main types of equations of mathematical physics. Earlier, the variation formulation of
the inverse problem for the equation of quasioptics studied in [4-8] and others, when
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the quality criterion formulated by the final observation. Formulation of the inverse
problem considered in this paper differs from the productions, previously studied sim-
ilar inverse problems, as by the quality criterion, as by the functional spaces, where
decided the solutions of these problems.

The traditional theory of inverse problems for equations of mathematical physics
is built to determine the real-valued coefficients of these equations [9.10]. There are
very few studies by the inverse problem of determining the coefficients of complex
differential equations. Therefore, this work is also of interest to the development the
variation methods for determining the coefficients of complex differential equations.

2 Statement of the Problem

Let D - be the bounded domain of n-dimensional Euclidean space En, Γ - the boundary
of the domain D, which is assumed to be sufficiently smooth, T > 0, L > 0- are
given numbers, 0 ≤ t ≤ T , 0 ≤ z ≤ L, x = (x1, x2, ..., xn) ∈ D- the arbitrary
point, Ωt = D × (0, t), Ωz = D × (0, z), Ωtz = D × (0, t) × (0, z), Ω = ΩTL,Stz =
Γ × (0, t) × (0, z),S = STL; Ck ([0, T ] , B)- Banach space with all defined and k ≥
0 times continuously differentiable functions on the interval [0, T ] with values in a
Banach space B, Lp (D) - Lebesgue space of functions integrable in D with the degree
p ≥ 1; W k

p (D) , W k,m
p (Q) , p ≥ 1, k ≥ 0, m ≥ 0 - Sobolev spaces, which are defined,

for example, in [11]; W 0,1,1
2 (Ω) Hilbert space with all elements u = u (x, t, z) from

L2 (Ω), with generalized derivatives ∂u
∂t
, ∂u
∂z

from the L2 (Ω) space, the scalar product
and the norm are defined by the equations:

(u1, u2)W 0,1,1
2 (Ω) =

∫
Ω

(
u1ū2 +

∂u1

∂t

∂ū2

∂t
+
∂u1

∂z

∂ū2

∂z

)
dxdtdz,

‖u‖W 0,1,1
2 (Ω) =

√
(u, u)W 0,1,1

2 (Ω) < +∞;

W 2,0,0
2 (Ω)- Hilbert space with all elements u = u (x, t, z) of the L2 (Ω) space with

generalized derivatives ∂u
∂xj
, j = 1, n, ∂2u

∂xj∂xp
, j, p = 1, n of the space L2 (Ω), the scalar

product and the norm are defined by the equations:

(u1, u2)W 2,0,0
2 (Ω) =

∫
Ω

(
u1ū2 +

n∑
j=1

∂u1

∂xj

∂ū2

∂xj
+

n∑
j,p=1

∂2u1

∂xj∂xp

∂2ū2

∂xj∂xp

)
dxdtdz,

‖u‖W 2,0,0,
2 (Ω) =

√
(u, u)W 2,0,0

2 (Ω) < +∞;

W 2,1,1
2 (Ω) ≡ W 2,0,0

2 (Ω)
⋂
W 0,1,1

2 (Ω) ;
0

W
2,1,1

2 (Ω) - the subspace of the W 2,1,1
2 (Ω)

space, whose elements vanish on S = Γ × (0, T ) × (0, L); the symbol
0

∀ is mean that
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the this property has for almost all values of variable. Constants, independent of the
estimated values, denote by cj, j = 0, 1, 2, ....

Consider the initial-boundary value problem for a linear non-stationary equation of
quasioptics, which often arises in nonlinear optics in the study of the propagation the
light beam in an inhomogeneous medium, when the complex amplitude of the electric
field of the light wave depends by the time [1]:

i
∂ψ

∂t
+ ia0

∂ψ

∂z
−

n∑
j,p=1

∂

∂xj

(
ajp (x)

∂ψ

∂xp

)
+ a (x)ψ + v (x, t, z)ψ =

= f (x, t, z) , (x, t, z) ∈ Ω, (2.1)

ψ (x, 0, z) = φ0 (x, z) , (x, z) ∈ ΩL, ψ (x, t, 0) = φ1 (x, t) , (x, t) ∈ ΩT , (2.2)

ψ|S = 0, (2.3)

where i =
√
−1; ψ = ψ (x, t, z) - is the wave function or the complex amplitude of

the electric field of the light wave (beam), which extends along the axis z,v (x, t, z) =
v0 (x, t, z)+iv1 (x, t, z), and v0 (x, t, z), v1 (x, t, z) - the refractive index and absorption of
the medium, f (x, t, z) - given complex-valued function, φ0 (x, z) - given initial complex
amplitude of the electric field, φ1 (x, t) - specifies the initial phase profile. a0 > 0 - a real
number, ajp (x), j, p = 1, n, a (x) - given the real-valued bounded measurable functions
with bounded measurable derivatives ∂ajp(x)

∂xl
, j, p, l = 1, n. Let the following conditions

are satisfied:

ajp (x) = apj (x) , µ0

n∑
j=1

|ξj|2 ≤
n∑

j,p=1

ajp (x) ξj ξ̄p ≤ µ1

n∑
j=1

|ξj|2, ∀ξj ∈ C, (2.4)

∣∣∣∣∂ajp (x)

∂xl

∣∣∣∣ ≤ µ2,
◦
∀x ∈ D, j, p, l = 1, n, µ0, µ1, µ2 = const > 0 (2.5)

µ3 ≤ a (x) ≤ µ4, ∀̇x ∈ D, µ3, µ4 = const > 0; (2.6)

the symbol
0

∀ means "for almost all".
We consider the inverse problem of determining the unknown coefficients v0 (x, t, z),

v1 (x, t, z), and the function ψ (x, t, z) of the conditions (2.1)-(2.3). Suppose further
defined the second boundary condition for the equation (2.1)

∂ψ

∂N

∣∣∣∣
S

=
n∑

j,p=1

ajp (x)
∂ψ

∂xp
cos (ν, xj)

∣∣∣∣∣
S

= 0, (2.7)

where ν- is the external normal of boundary Γ of the domain D, and N− is conormal.
Unknown coefficients v0 = v0 (x, t, z),v1 = v1 (x, t, z) will be found on the set:
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V ≡
{
v = (v0, v1) , vm ∈ W 0,1,1

2 (Ω) , |vm (x, t, z)| ≤ bm ,

∣∣∣∣∂vm (x, t, z)

∂t

∣∣∣∣ ≤ dm,

∣∣∣∣∂vm (x, t, z)

∂z

∣∣∣∣ ≤ cm,m = 0, 1,
0

∀ (x, t, z) ∈ Ω

}
,

where bm > 0,dm > 0, cm > 0, m = 0, 1 - are given numbers. The set V is called the
set of admissible coefficients.

Following the methods of the paper [2,3] we will present a variation formulation
of the inverse problem. Through ψ1 = ψ1 (x, t, z) will denote the solution of the first
initial-boundary value problem (2.1) - (2.3) for the equation (2.1). Let ψ2 = ψ2 (x, t, z)
is the solution of the second initial-boundary value problem (2.1), (2.2), (2.7)for the
(2.1). Now, consider the problem of minimizing the functional:

Jα (v) = ‖ψ1 − ψ2‖2
L2(Ω) + α ‖v − ω‖2

H (2.8)

on the set V with the following conditions:

i
∂ψk
∂t

+ ia0
∂ψk
∂z
−

n∑
j,p=1

∂

∂xj

(
ajp (x)

∂ψk
∂xp

)
+ a (x)ψk+

+v0 (x, t, z)ψk + iv1 (x, t, z)ψk = fk (x, t, z) , (x, t, z) ∈ Ω, k = 1, 2, (2.9)

ψk(x, 0, z) = ϕ0k(x, z), (x, z) ∈ ΩL,

ψk(x, t, 0) = ϕ1k(x, z), (x, t) ∈ ΩT , k = 1, 2, (2.10)

ψ1|S = 0,
∂ψ2

∂N

∣∣∣∣
S

=
n∑

j,p=1

ajp (x)
∂ψ2

∂xp
cos (ν, xj)

∣∣∣∣∣
S

= 0. (2.11)

where α ≥ 0 - is given number, H ≡ W 0,1,1
2 (Ω) ×W 0,1,1

2 (Ω), ω = (ω0, ω1) ∈ H - is
specified element, fk (x, t, z) , ϕ0k (x, z) , ϕ1k (x, t) ,k = 1, 2 - is a given complex-valued
function satisfying the conditions:

fk ∈ W 0,1,1
2 (Ω) , k = 1, 2, (2.12)

ϕ01 ∈
0

W 2,1
2 (ΩL) , ϕ02 ∈ W 2,1

2 (ΩL) ,
∂ϕ02

∂N
|SL

= 0, (2.13)
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ϕ11 ∈
0

W 2,1
2 (ΩT ) , ϕ12 ∈ W 2,1

2 (ΩT ) ,
∂ϕ12

∂N
|ST

= 0, (2.14)

where SL = Γ×(0, L), ST = Γ×(0, T ). For each v ∈ V the problem of the determining
the functions ψk = ψk (x, t, z) ≡ ψk (x, t, z; v) , k = 1, 2 from the conditions (2.9) -(2.11)
are the first and the second initial-boundary value problem for the equation (2.9). By
the solution of the first initial-boundary value problem for each v ∈ V we will mean a

function ψ1 (x, t, z) of the space
0

W
2,1,1

2 (Ω), with k=1 satisfying (2.9)-(2.11) for almost
all (x, t, z) ∈ Ω. The same way, for every v ∈ V the function ψ2 (x, t, z) of the space
W 2,1,1

2 (Ω), is called a solution of the second initial-boundary value problem for the
equation (2.9), if k=2, it satisfies the conditions(2.9) -(2.11) for almost all (x, t, z) ∈ Ω.

Note that these initial-boundary value problems have been previously studied in [8].
In that paper, theorems of the existence and uniqueness of solutions of initial-boundary
value problems have been proved by the Galerkin method. From the results of that
paper, the following theorem holds.

Theorem 2.1. Let the functions ajp (x) , j, p = 1, n, a (x) , fk(x, t, z),ϕ0k(x, z),ϕ1k(x, t),
k = 1, 2 satisfy respectively the conditions (2.4)-(2.6) and (2.12)-(2.14). Then the first
and the second initial-boundary value problems for the equation(2.1), for each v ∈ V

has an unique solution respectively such that the ψ1 ∈
0

W
2,1,1

2 (Ω) ,ψ2 ∈ W 2,1,1
2 (Ω), and

for these solutions have the following estimates:

‖ψ1‖2
0
W

2,1,1

2 (Ω)
≤ c2

(
‖ϕ01‖2

0
W

2,1

2 (ΩL)
+ ‖ϕ11‖2

0
W

2,1

2 (ΩT )
+ ‖f1‖2

W 0,1,1
2 (Ω)

)
, (2.15)

‖ψ2‖2
W 2,1,1

2 (Ω) ≤ c3

(
‖ϕ02‖2

W 2,1
2 (ΩL) + ‖ϕ12‖2

W 2,1
2 (ΩT ) + ‖f2‖2

W 0,1,1
2 (Ω)

)
, (2.16)

where c2 > 0, c3 > 0−is the constants independent of ϕ0k, ϕ1k and fk, k = 1, 2.

The following theorem proved in [12]:

Theorem 2.2. Let X- is uniformly convex space, U- is a closed bounded set of X, the
functional I (v) on the U is semi-continuous and lower limited, α > 0, β ≥ 1 - is a
given number. Then there exists a dense subset G of X such that for any ω ∈ G the
functional

Jα (v) = I (v) + α ‖v − ω‖βX (2.17)

get the minimum value on U . If β > 1, then the minimum value of the functional
Jα (v) on U will get on a single element.
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3 Existence and uniqueness of solutions of the variation for-
mulation of the inverse problem

Theorem 3.1. Let functions ajp (x),j, p = 1, n, a (x),f (x, t, z) , ϕ0(x, z), ϕ1(x, t) sat-
isfy respectively the conditions (2.4) - (2.6)and (2.12) - (2.14). Then there exists the
dense subset G of the space H such that for all ω ∈ G and α > 0 the problem (2.8) -
(2.11)has an unique solution.

Proof. Firstly, we will prove the continuity of the functional

J0 (v) = ‖ψ 1 − ψ2‖2
L2(Ω) (3.1)

on the set V . Let ∆v ∈ B ≡ W 0,1,1
∞ (Ω) × W 0,1,1

∞ (Ω) - increment of any element
v ∈ V such that v + ∆v ∈ V . Denote ∆ψk = ∆ψk (x, t, z) ≡ ψk (x, t, z; v + ∆v) −
ψk (x, t, z; v),k = 1, 2. From the conditions (2.9)-(2.11) we have that ∆ψk = ∆ψk (x, t, z),
k = 1, 2 satisfies the conditions of the following system:

i
∂∆ψk
∂t

+ ia0
∂∆ψk
∂z

−
n∑

j,p=1

∂

∂xj

(
ajp (x)

∂∆ψk
∂xp

)
+ a (x) ∆ψk+

+ (v0 (x, t, z) + ∆v0 (x, t, z)) ∆ψk + i (v1 (x, t, z) + ∆v1 (x, t, z)) ∆ψk =

= −∆v0 (x, t, z)ψk − i∆v1 (x, t, z)ψk, (x, t, z) ∈ Ω, k = 1, 2, (3.2)

∆ψk (x, 0, z) = 0, (x, z) ∈ ΩL, ∆ψk (x, t, 0) = 0, (x, t) ∈ ΩT , k = 1, 2, (3.3)

∆ψ1|S = 0,
∂∆ψ2

∂N

∣∣∣∣
S

= 0. (3.4)

We multiply both sides of (3.2) by the function ∆ψ̄k = ∆ψ̄k (x, t, z) , k = 1, 2 and
integrate by the domain Ωtz. Further, from the above equalities subtract their complex
conjugation, then we have:

∫
Ωtz

∂
∂t
|∆ψk|2 dxdτdθ +

∫
Ωtz

∂
∂z
|∆ψk|2 dxdτdθ = −2

∫
Ωtz

(v1 + ∆v1) |∆ψk|2 dxdτdθ−
−2
∫

Ωtz
Im
(
∆v0ψk∆ψ̄k

)
dxdτdθ − 2

∫
Ωtz

Re
(
∆v1ψk∆ψ̄k

)
dxdτdθ,

∀t ∈ [0, T ] , ∀z ∈ [0, L] , k = 1, 2.

From these equations by using the estimates (2.15) and (2.16) with these above
conditions imply the inequalities:

‖∆ψk ( ·, t, ·)‖2
L2(ΩL) + ‖∆ψk ( ·, ·, z)‖2

L2(ΩT ) ≤

≤ c4

(
‖∆v0‖2

L∞(Ω) + ‖∆v1‖2
L∞(Ω)

)
, k = 1, 2 , (3.5)



108 A.D. Iskenderov, G.Ya. Yagubov, N.S. Ibragimov, N.Y.Aksoy

for ∀t ∈ [0, T ] , ∀z ∈ [0, L]. Integrating these inequalities we obtain:

‖∆ψk‖2
L2(Ω) ≤ c5

(
‖∆v0‖2

L∞(Ω) + ‖∆v1‖2
L∞(Ω)

)
, k = 1, 2 . (3.6)

Now, consider the increment of the functional J0 (v) on any element v ∈ V . Using
formula (3.1), the increment of the functional J0 (v) can be written as:

∆J0(v) =

∫
Ω

Re
[
(ψ1 (x, t, z)− ψ2 (x, t, z))

(
∆ψ̄1 (x, t, z)−∆ψ̄2 (x, t, z)

)]
dxdtdz +

‖∆ψ1‖2
L2(Ω) + ‖∆ψ2‖2

L2(Ω) 2

∫
Ω

Re
(
∆ψ1 (x, t, z) ∆ψ̄2 (x, t, z)

)
dxdtdz(3.7)

Hence, using the estimates (2.15) and (2.16),(3.6) and the Cauchy-Schwarz inequal-
ity we obtain:

|∆J0 (v)| ≤ c6

(
‖∆v0‖L∞(Ω) + ‖∆v1‖L∞(Ω) + ‖∆v0‖2

L∞(Ω) + ‖∆v1‖2
L∞(Ω)

)
.

From this inequality we obtain the following limit value:

|∆J0 (v)| → 0 ‖∆v‖B → 0 (3.8)

for ∀v ∈ V . From this limit relation follows the continuity of the functional J0 (v)
on the set V . The bottom functional limitations J0 (v) on the set V follows from the
inequality J0 (v) ≥ 0, ∀v ∈ V . It is easy to prove that the set V is closed and bounded
convex set in a uniformly convex space H ≡ W 0,1,1

2 (Ω) ×W 0,1,1
2 (Ω) [see. 13, 182 p.].

Then we can say that all the conditions of Theorem 2.2 satisfy. Therefore, by this
theorem, we conclude that there exists a dense subset G of the space H such that for
any ω ∈ G and for any α > 0 the problem (2.8)-(2.11) has an unique solution. Theorem
3.1 is proved.

This theorem shows that the problem (2.8)-(2.11) has an unique solution if α > 0
for any ω ∈ G. The following result shows that this problem has at least one solution
for any α ≥ 0 and for any ω ∈ H.

Theorem 3.2. Let the conditions of Theorem 2.1 satisfy and ω ∈ H−is the given
element. Then the problem (2.8)-(2.11)with α ≥ 0 has at least one solution.

Proof. Take any minimizing sequence {vm} ⊂ V :

lim
m→∞

Jα (vm) = Jα∗ = inf
v∈V

Jα (v) .

Suppose that ψkm = ψkm (x, t, z) ≡ ψk (x, t, z; vm),k = 1, 2,m = 1, 2, .... By the
Theorem 2.1, the initial-boundary value problems has an unique solutions for each
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vm ⊂ V,m = 1, 2, ... such that ψ1m ∈
0

W
2,1,1

2 (Ω) , ψ2m ∈ W 2,1,1
2 (Ω) ,m = 1, 2, ...,

respectively, and the following estimates:

‖ψ1m‖2
0
W

2,1,1

2 (Ω)
≤ c2

(
‖ϕ01‖2

0
W

2,1

2 (ΩL)
+ ‖ϕ11‖2

0
W

2,1

2 (ΩT )
+ ‖f1‖2

W 0,1,1
2 (Ω)

)
,m = 1, 2, ...,

(3.9)

‖ψ2m‖2
W 2,1,1

2 (Ω) ≤ c3

(
‖ϕ02‖2

W 2,1
2 (ΩL) + ‖ϕ12‖2

W 2,1
2 (ΩT ) + ‖f2‖2

W 0,1,1
2 (Ω)

)
,m = 1, 2, ...,

(3.10)

V is a bounded set of a Banach space B, then from the sequence {vm} ⊂ V
can be taken a subsequence {vml}, which we again denote by {vm}, the vmp → vp,
∂vmp
∂t
→ ∂vp

∂t
,∂v

m
p

∂z
→ ∂vp

∂z
, p = 0, 1, (*) is weak in L∞ (Ω) with k →∞ (3.11).

We will prove that the limit function v (x, t, z) belongs to the set V . Indeed, from the
structure of this set is clear that we have the inequalities for the sequence

{
vk
}
⊂ V :

∥∥vmp ∥∥L∞(Ω)
≤ bp,

∥∥∥∥∂vmp∂t
∥∥∥∥
L∞(Ω)

≤

≤ dp,

∥∥∥∥∂vmp∂z
∥∥∥∥
L∞(Ω)

≤ cp, p = 0, 1, m = 1, 2, .... (3.12)

By the weak lower semi-continuity of the norm of the space L∞ (Ω) and the limit
relations (3.11) for the limit function v (x, t, z) with the transition to the lower limit in
(3.12) we obtain the following inequality:

‖vp‖L∞(Ω) ≤ bp,

∥∥∥∥∂vp∂t
∥∥∥∥
L∞(Ω)

≤ dp,

∥∥∥∥∂vp∂z
∥∥∥∥
L∞(Ω)

≤ cp, p = 0, 1. (3.13)

It is clear that

|vp (x, t, z)| ≤ bp,

∣∣∣∣∂vp (x, t, z)

∂t

∣∣∣∣ ≤ dp,

∣∣∣∣∂vp (x, t, z)

∂z

∣∣∣∣ ≤ cp, p = 0, 1,
◦
∀ (x, t, z) ∈ Ω.

We get that v ∈ V from these inequalities and the structure of the set V . We can
write the following limit relations by the (3.11):

∫
Ω

vmp (x, t, z) q (x, t, z) dxdtdz →
∫
Ω

vp (x, t, z) q (x, t, z) dxdtdz, p = 0, 1, (3.14)
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if m→∞ for any function q ∈ L1 (Ω).
From estimates (3.9)and (3.10) follows that the sequence {ψkm (x, t, z)} , k = 1, 2 is

respectively uniformly bounded in the norm spaces
0

W 22,1,1 (Ω) ,W 2,1,1
2 (Ω). Then we

can extract such subsequences {ψkml
(x, t, z)} , k = 1, 2 from these sequences, which we

again denote by {ψkm (x, t, z)} , k = 1, 2 for simplicity, that

ψkm → ψk, k = 1, 2 in W 2,1,1
2 weakly with m→∞. (3.15)

By the compactness of the embedding spaces
0

W 22,1,1 (Ω) ,W 2,1,1
2 (Ω) âL2 (Ω) we have:

ψkm → ψk, k = 1, 2 strongly L2 (Ω) при m→∞. (3.16)

Using the relations (3.14)-(3.16) and passing to the limit with m → ∞ in the
identities:∫

Ω

[
i∂ψkm

∂t
+ ia0

∂ψkm

∂z
−
∑n

j,p=1
∂
∂xj

(
ajp ( x) ∂ψkm

∂xp

)
+ a ( x) ψkm +

+ vm0 (x, t, z)ψkm + ivm1 (x, t, z)ψkm − fk (x, t, z) ] η̄(x, t, z)] dxdtdz = 0, k = 1, 2

for any function η ∈ L2 (Ω), we obtain the validity of the fact that the limit functions

ψk (x, t, z) , k = 1, 2 of W 2,1,1
2 (Ω) , satisfy the equations of(2.9) for

0

∀ (x, t, z) ∈ Ω. Of

the embedding space
0

W
2,1,1

2 (Ω) in L2 (S) we have:
‖ψ1m − ψ1‖L2(S) → 0 m→∞.
Using this and the condition:

ψ1m|S = 0,m = 1, 2, ...

from inequality:

‖ψ1‖L2(S) ≤ ‖ψ1 − ψ1m‖L2(S) + ‖ψ1m‖L2(S)

we see that the limit function ψ1 (x, t, z) satisfies the first boundary condition in (2.11)
for almost all (ξ, t, z) ∈ S.

By the theorem of traces of functions of the space W 2,1,1
2 (Ω) for a subsequence

{ψ2m (x, t, z)} which converges weakly in the space υ (x, t, z), we have the relation:
∂ψ2m

∂N

∣∣
S
→ ∂ψ2

∂N

∣∣
S
weakly in L2 (S) ı̈ğè m→∞.

Using this and the condition:

∂ψ2m

∂N

∣∣∣∣
S

= 0,m = 1, 2, ...,

With the transition to the limit:∫
S

∂ψ2

∂N
η̄ds =

∫
S

(
∂ψ2

∂N
− ∂ψ2m

∂N

)
η̄ds+

∫
S

∂ψ2m

∂N
η̄ds

for any function η ∈ L2 (S), we obtain the validity of
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∫
S

∂ψ2

∂N
η̄ds = 0

for any function η ∈ L2 (S). This gives that the limit function ψ2 (x, t, z) of W 2,1,1
2 (Ω)

satisfies the second boundary condition of (2.11) for almost all (ξ, t, z) ∈ S. Now show
that the limit functions ψk (x, t, z) , k = 1, 2 satisfies to the condition (2.10). It is clear

that the elements {ψ1m} ∈
0

W
2,1,1

2 (Ω), {ψ2m} ∈W 2,1,1
2 (Ω) satisfies the relations:

ψ1m ∈ L2

(
0, T ;

0

W 2,1
2 (ΩL)

)
,

∂ψ1m

∂t
∈ L2 (0, T ; L2 (ΩL)) , m = 1, 2, ..., (3.17)

ψ2m ∈ L2

(
0, T ; W 2,1

2 (ΩL)
)
,

∂ψ2m

∂t
∈ L2 (0, T ; L2 (ΩL)) , m = 1, 2, ... (3.18)

and have the limit relations:

ψkm → ψk weakly in L2

(
0, T ; W 2,1

2 (ΩL)
)
, k = 1, 2, (3.19)

∂ψkm
∂t
→ ∂ψk

∂t
weakly in L2 (0, T ; L2 (ΩL)) , k = 1, 2 (3.20)

when m→∞. From these relations and the embedding theorem we establish that

‖ψkm ( ·, t, ·)− ψk ( ·, t, ·)‖L2(ΩL) → 0, k = 1, 2 m→∞ , ∀t ∈ [0, T ] . (3.21)

Similarly, it is established that

‖ψkm (·, ·, z)− ψk (·, ·, z)‖L2(ΩT ) → 0, k = 1, 2 with m→∞, ∀z ∈ [0, L] . (3.22)

With the limit relations (3.21),(3.22) and conditions:

ψkm (x, 0, z) = ϕ0k(x, z), k = 1, 2 (x, z) ∈ ΩL, m = 1, 2, ... , (3.23)

ψkm (x, t, 0) = ϕ1k(x, t), k = 1, 2 (x, t) ∈ ΩT , m = 1, 2, ..., (3.24)

with the transition to the limit by m→∞ in inequalities:

‖ψk (·, 0, ·)− ϕ0k‖L2(ΩL) ≤ ‖ψk (·, 0, ·)− ψkm(·, 0, ·)‖L2(ΩL) +

+ ‖ψkm (·, 0, ·)− ϕ0k‖L2(ΩL) , k = 1, 2, (3.25)
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‖ψk (·, ·, 0)− ϕ1k‖L2(ΩL) ≤ ‖ψk (·, ·, 0)− ψkm(·, ·, 0)‖L2(ΩL) +

+ ‖ψkm (·, ·, 0)− ϕ1k‖L2(ΩL) , k = 1, 2, (3.26)

obtain the validity of:

‖ψk (·, 0, ·)− ϕ0k‖L2(ΩL) = 0, ‖ψk (·, ·, 0)− ϕ1k‖L2(ΩL) = 0, k = 1, 2, (3.27)

It follows that the limit functions ψk (x, t, z) , k = 1, 2 respectively satisfies the condi-
tions (2.10) for almost all (x, z) ∈ ΩL and (x, t) ∈ ΩT . Thus, we have proved that

the limit function ψ1 = ψ1 (x, t, z) of the space
0

W 22,1,1 (Ω) and the limit function
ψ2 = ψ2 (x, t, z) of the space W 2,1,1

2 (Ω) are the solutions of the corresponding initial-
boundary value problems for the limit function v = v (x, t, z)∈ V of a subsequence
{vm} ⊂ V , that the ψk = ψk (x, t, z) ≡ ψk (x, t, z; v) , k = 1, 2. These solutions have the
estimates (2.15) and (2.16), which follow from (3.9), (3.10) with the transition to the
lower limit of weakly convergent subsequences {ψkm (x, t, z)} , k = 1, 2 to the functions
ψk (x, t, z) , k = 1, 2. We obtain the relation by the limit relations (3.15) and the weak
lower semi-continuity of norm spaces L2 (Ω) and H, and by α ≥ 0 for ∀ω ∈ H:

Jα∗ ≤ Jα (υ) ≤ lim
−−−−−
m→∞

Jα (vm) = inf
v∈V

Jα (v) = Jα∗.

This means that the limit function v = v (x, t, z) from of the subsequence {vm} of
V gives the minimum to the functional Jα (v) on the set V , the v ∈ V is the solution
of the identification problem (2.8) - (2.11). Theorem 3.2 is proved.

4 Differentiability of a quality criteria and a necessary condi-
tion for the solution of the variation problem

Let ϕk = ϕk (x, t, z) , k = 1, 2 are solutions of the following problems:

i
∂ϕk
∂t

+ ia0
∂ϕk
∂z
−

n∑
p,j=1

∂

∂xp

(
ajp (x)

∂ϕk
∂xj

)
+ a (x)ϕk + v0 (x, t, z)ϕk − iv1 (x, t, z)ϕk =

= ( −1)k 2 (ψ1 − ψ2) , (x, t, z) ∈ Ω, k = 1, 2, (4.1)

ϕk (x, T, z) = 0, (x, z) ∈ ΩL, k = 1, 2, (4.2)

ϕk (x, t, L) = 0, (x, t) ∈ ΩT , k = 1, 2, (4.3)

ϕ1|S = 0,
∂ϕ2

∂N

∣∣∣∣
S

= 0, (4.4)
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This problem is called the dual problem of the problem (2.8) - (2.11). The system
(4.1) - (4.4) is similar to the system (2.8) - (2.11) . Therefore, the solution of the adjoint
system means as analogous of the solution of the initial-boundary value problems.

This function ϕ1 = ϕ1 (x, t, z) belongs to the space
0

W 22,1,1 (Ω), and the function
ϕ2 = ϕ2 (x, t, z) belongs to the space W 2,1,1

2 (Ω) and the conditions (4.1) - (4.4) are
satisfied for almost all (x, t, z) ∈ Ω.

With substitutions τ = T − t, θ = L − z the adjoint problem (4.1) - (4.4) can
be reduced to an initial-boundary value problem, which is a problem of type complex
conjugate of the problem (2.9) - (2.11). Therefore, from Theorem 2.1 we have:

Theorem 4.1. Let we have the conditions of Theorem 2.1. The the adjoint problem

(4.1) - (4.4) for each v ∈ V has an unique solution ϕ1 ∈
0

W 22,1,1 (Ω),ϕ2 ∈ W 2,1,1
2 (Ω)

and for these functions the following estimates:

‖ϕ 1‖2
0

W 2,1,1
2 (Ω)

≤ c7

(
‖ψ1 − ψ2‖2

W 0,1,1
2 (Ω)

)
, (4.5)

‖ϕ 2‖2
W 2,1,1

2 (Ω) ≤ c8

(
‖ψ1 − ψ2‖2

W 0,1,1
2 (Ω)

)
, (4.6)

where c7 > 0, c8 > 0- is the constants, independent of ψk, k = 1, 2.
Firstly, we will prove the existence of the first variation of the functional Jα (v) and

will find its expression.

Theorem 4.2. Let we have the conditions of Theorem 2.1 and ω ∈ H−is the given
element. Then for any function w = w (x, t, z) of B and for any v ∈ V there exists the
first variation of the functional Jα (v) and we have the following expression:

δJα (v, w) =

∫
Ω

Re (ψ1 (x, t, z) ϕ̄1 (x, t, z) + ψ2 (x, t, z) ϕ̄2 (x, t, z))w0 (x, t, z) dxdtdz−

−
∫

Ω

Im (ψ1 (x, t, z) ϕ̄1 (x, t, z) + ψ2 (x, t, z) ϕ̄2 (x, t, z))w1 (x, t, z) dxdtdz+

+2α

∫
Ω

(v0 (x, t, z)− ω0 (x, t, z))w0 (x, t, z) dxdtdz+

+2α

∫
Ω

(v1 (x, t, z)− ω1 (x, t, z))w1 (x, t, z) dxdtdz+

+2α

∫
Ω

(
∂v0 (x, t, z)

∂t
− ∂ω0 (x, t, z)

∂t

)
∂w0 (x, t, z)

∂t
dxdtdz+
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+2α

∫
Ω

(
∂v0 (x, t, z)

∂z
− ∂ω0 (x, t, z)

∂z

)
∂w0 (x, t, z)

∂z
dxdtdz+

+2α

∫
Ω

(
∂v1 (x, t, z)

∂t
− ∂ω1 (x, t, z)

∂t

)
∂w1 (x, t, z)

∂t
dxdtdz+

+2α

∫
Ω

(
∂v1 (x, t, z)

∂z
− ∂ω1 (x, t, z)

∂z

)
∂w1 (x, t, z)

∂z
dxdtdz (4.7)

for ∀w ∈ B, where ψk = ψk (x, t, z) ≡ ψk (x, t, z; v),ϕk = ϕk (x, t, z) ≡ ϕk (x, t, z; v),
k = 1, 2, v ∈ V , w = (w0, w1).

Proof. Calculating the increment of the functional Jα (v) of any element v ∈ V
and using the conditions (3.2) - (3.4)and(4.1) - (4.4), we establish the validity of the
formula:

∆Jα (v) = Jα (v + ∆v)− Jα (v) =

=

∫
Ω

Re (ψ1 (x, t, z) ϕ̄1 (x, t, z) + ψ2 (x, t, z) ϕ̄2 (x, t, z)) ∆v0 (x, t, z) dxdtdz−

−
∫

Ω

Im (ψ1 (x, t, z) ϕ̄1 (x, t, z) + ψ2 (x, t, z) ϕ̄2 (x, t, z)) ∆v1 (x, t, z) dxdtdz+

+2α

∫
Ω

(v0 (x, t, z)− ω0 (x, t, z)) ∆v0 (x, t, z) dxdtdz+

+2α

∫
Ω

(v1 (x, t, z)− ω1 (x, t, z)) ∆v1 (x, t, z) dxdtdz+

+2α

∫
Ω

(
∂v0 (x, t, z)

∂t
− ∂ω0 (x, t, z)

∂t

)
∂∆v0 (x, t, z)

∂t
dxdtdz+

+2α

∫
Ω

(
∂v0 (x, t, z)

∂z
− ∂ω0 (x, t, z)

∂z

)
∂∆v0 (x, t, z)

∂z
dxdtdz+
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+2α

∫
Ω

(
∂v1 (x, t, z)

∂t
− ∂ω1 (x, t, z)

∂t

)
∂∆v1 (x, t, z)

∂t
dxdtdz+

+2α

∫
Ω

(
∂v1 (x, t, z)

∂z
− ∂ω1 (x, t, z)

∂z

)
∂∆v1 (x, t, z)

∂z
dxdtdz + R̃ (∆v) , (4.8)

where the residual term R̃ (∆v) calculate by the formula:

R̃ (∆υ) =

∫
Ω

Re (∆ψ1 (x, t, z) ϕ̄1 (x, t, z) + ∆ψ2 (x, t, z) ϕ̄2 (x, t, z)) ∆v0 (x, t, z) dxdtdz−

−
∫

Ω

Im (∆ψ1 (x, t, z) ϕ̄1 (x, t, z) + ∆ψ2 (x, t, z) ϕ̄2 (x, t, z)) ∆v1 (x, t, z) dxdtdz+‖∆ψ1‖2
L2(Ω) +

+ ‖∆ψ2‖2
L2(Ω) − 2

∫
Ω

Re
(
∆ψ1 (x, t, z) ∆ψ̄2 (x, t, z)

)
dxdtdz + α ‖∆v‖2

H , (4.9)

∆v ∈ B - is increment of any element v ∈ V such that v + ∆v ∈ V , ∆ψk =
∆ψk (x, t, z) ≡ ψk (x, t, z; v + ∆v) − ψk (x, t, z; v) , k = 1, 2. By the estimates (3.6),
(4.5), (4.6)from (4.9) we obtain the inequality:∣∣∣R̃ (∆v)

∣∣∣ ≤ c9 ‖∆v‖2
B . (4.10)

It means that

R̃ (∆v) = o (‖∆v‖B) . (4.11)

Using this relationship the formula (4.8) can be represented as:

∆Jα (υ) =

∫
Ω

Re (ψ1 (x, t, z) ϕ̄1 (x, t, z) + ψ2 (x, t, z) ϕ̄2 (x, t, z)) ∆v0 (x, t, z) dxdtdz−

−
∫

Ω

Im (ψ1 (x, t, z) ϕ̄1 (x, t, z) + ψ2 (x, t, z) ϕ̄2 (x, t, z)) ∆v1 (x, t, z) dxdtdz+



116 A.D. Iskenderov, G.Ya. Yagubov, N.S. Ibragimov, N.Y.Aksoy

+2α

∫
Ω

(v0 (x, t, z)− ω0 (x, t, z)) ∆v0 (x, t, z) dxdtdz+

+2α

∫
Ω

(v1 (x, t, z)− ω1 (x, t, z)) ∆v1 (x, t, z) dxdtdz+

+2α

∫
Ω

(
∂v0 (x, t, z)

∂t
− ∂ω0 (x, t, z)

∂t

)
∂∆v0 (x, t, z)

∂t
dxdtdz+

+2α

∫
Ω

(
∂v0 (x, t, z)

∂z
− ∂ω0 (x, t, z)

∂z

)
∂∆v0 (x, t, z)

∂z
dxdtdz+

+2α

∫
Ω

(
∂v1 (x, t, z)

∂t
− ∂ω1 (x, t, z)

∂t

)
∂∆v1 (x, t, z)

∂t
dxdtdz+

+2α

∫
Ω

(
∂v1 (x, t, z)

∂z
− ∂ω1 (x, t, z)

∂z

)
∂∆v1 (x, t, z)

∂z
dxdtdz + o (‖∆υ‖B) . (4.12)

We will take θw ∈ B instead of ∆v ∈ B, where 0 < θ < 1, w ∈ B - is any element
is satisfying to v + θw ∈ V . So, we have:

∆Jα(v) = Jα(v + θw)− Jα(v) =

= θ

[∫
Ω

Re (ψ1 (x, t, z) ϕ̄1 (x, t, z) + ψ2 (x, t, z) ϕ̄2 (x, t, z))w0 (x, t, z) dxdtdz−

−
∫

Ω

Im (ψ1 (x, t, z) ϕ̄1 (x, t, z) + ψ2 (x, t, z) ϕ̄2 (x, t, z))w1 (x, t, z) dxdtdz+

+2α

∫
Ω

(v0 (x, t, z)− ω0 (x, t, z))w0 (x, t, z) dxdtdz+

+2α

∫
Ω

(v1 (x, t, z)− ω1 (x, t, z))w1 (x, t, z) dxdtdz+
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+2α

∫
Ω

(
∂v0 (x, t, z)

∂t
− ∂ω0 (x, t, z)

∂t

)
∂w0 (x, t, z)

∂t
dxdtdz+

+2α

∫
Ω

(
∂v0 (x, t, z)

∂z
− ∂ω0 (x, t, z)

∂z

)
∂w0 (x, t, z)

∂z
dxdtdz+

+2α

∫
Ω

(
∂v1 (x, t, z)

∂t
− ∂ω1 (x, t, z)

∂t

)
∂w1 (x, t, z)

∂t
dxdtdz+

+2α

∫
Ω

(
∂v1 (x, t, z)

∂z
− ∂ω1 (x, t, z)

∂z

)
∂w1 (x, t, z)

∂z
dxdtdz

]
+ o (θ)

Using this relation we can compute the first variation of the functional in the form
of:

δJα (v, w) = lim
θ→+0

Jα (v + θω)− Jα (v)

θ
=

=

∫
Ω

Re (ψ1 (x, t, z) ϕ̄1 (x, t, z) + ψ2 (x, t, z) ϕ̄2 (x, t, z))w0 (x, t, z) dxdtdz−

−
∫

Ω

Im (ψ1 (x, t, z) ϕ̄1 (x, t, z) + ψ2 (x, t, z) ϕ̄2 (x, t, z))w1 (x, t, z) dxdtdz+

+2α

∫
Ω

(v0 (x, t, z)− ω0 (x, t, z))w0 (x, t, z) dxdtdz+

+2α

∫
Ω

(v1 (x, t, z)− ω1 (x, t, z))w1 (x, t, z) dxdtdz+

+2α

∫
Ω

(
∂v0 (x, t, z)

∂t
− ∂ω0 (x, t, z)

∂t

)
∂w0 (x, t, z)

∂t
dxdtdz+

+2α

∫
Ω

(
∂v0 (x, t, z)

∂z
− ∂ω0 (x, t, z)

∂z

)
∂w0 (x, t, z)

∂z
dxdtdz+
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+2α

∫
Ω

(
∂v1 (x, t, z)

∂t
− ∂ω1 (x, t, z)

∂t

)
∂w1 (x, t, z)

∂t
dxdtdz+

+2α

∫
Ω

(
∂v1 (x, t, z)

∂z
− ∂ω1 (x, t, z)

∂z

)
∂w1 (x, t, z)

∂z
dxdtdz + lim

θ→+0

o (θ)

θ
, ∀w ∈ B.

We have that lim
θ→+0

o(θ)
θ

= 0, we obtain the statement of the theorem from the last
equality. Theorem 4.2 is proved.

Now, we will prove the necessary condition for the solution of the problem (2.8) -
(2.11).

Theorem 4.3. Let we have the conditions of Theorem 2.1. Suppose, that V∗ ≡{
v∗ ∈ V : J (v∗) = J∗ = inf

v∈V
J (v)

}
- is the set of solutions of problem (2.8) - (2.11).

Then for any element v∗ ∈ V∗ ⊂ V necessary the following inequalities:

∫
Ω

Re (ψ∗1 (x, t, z) ϕ̄∗1 (x, t, z) + ψ∗2 (x, t, z) ϕ̄∗2 (x, t, z)) (v0 (x, t, z)− v∗0 (x, t, z)) dxdtdz−

−
∫

Ω

Im (ψ∗1 (x, t, z) ϕ̄∗1 (x, t, z) + ψ∗2 (x, t, z) ϕ̄∗2 (x, t, z)) (v1 (x, t, z)− v∗1 (x, t, z)) dxdtdz+

+2α

∫
Ω

(v∗0 (x, t, z)− ω0 (x, t, z)) (v0 (x, t, z)− v∗0 (x, t, z)) dxdtdz+

+2α

∫
Ω

(v∗1 (x, t, z)− ω1 (x, t, z)) (v1 (x, t, z)− v∗1 (x, t, z)) dxdtdz+

+2α

∫
Ω

(
∂v∗0 (x, t, z)

∂t
− ∂ω0 (x, t, z)

∂t

)(
∂v0 (x, t, z)

∂t
− ∂v∗0 (x, t, z)

∂t

)
dxdtdz+

+2α

∫
Ω

(
∂v∗0 (x, t, z)

∂z
− ∂ω0 (x, t, z)

∂z

)(
∂v0 (x, t, z)

∂z
− ∂v∗0 (x, t, z)

∂z

)
dxdtdz+

+2α

∫
Ω

(
∂v∗1 (x, t, z)

∂t
− ∂ω1 (x, t, z)

∂t

)(
∂v1 (x, t, z)

∂t
− ∂v∗1 (x, t, z)

∂t

)
dxdtdz+



Variation formulation of the inverse problem 119

+2α

∫
Ω

(
∂v∗1 (x, t, z)

∂z
− ∂ω1 (x, t, z)

∂z

)(
∂v1 (x, t, z)

∂z
− ∂v∗1 (x, t, z)

∂z

)
dxdtdz ≥ 0,

∀v ∈ V, (4.13)

where ψ∗k (x, t, z) ≡ ψk (x, t, z; v∗);ϕ∗k (x, t, z) = ϕk (x, t, z; v∗) , k = 1, 2.

Proof. Let v = v (x, t, z) - is an arbitrary element of V , and v∗ = v∗ (x, t, z) - is
any element of the set V∗, i.e. the solution of the problem (2.8) - (2.11). It is clear that
it is a convex set from the structure of the set V . For ∀v∗ ∈ V∗ ⊂ V ,∀v ∈ V , we have:

v∗ + θ (v − v∗) ∈ V, ∀θ ∈ (0, 1) (4.15)

Therefore, for v∗ ∈ V∗ ⊂ V - is a point on the set of minimum functional J (v) of
the set V we need that for any inequality (see. [14], 408p):

d

dθ
J (v∗ + θ (v − v∗))|θ=0 = δJ (v∗, v − v∗) ≥ 0. (4.16)

Hence, by the formula (4.7) for v = v∗,w = v − v∗, we obtain the inequality (4.13).
Theorem 4.4 is proved.

5 Conclusion

Quasioptics as a section of nonlinear optics develops intensively in the literature [1,8].
For solving inverse problems of quasioptics often used engineering heuristics like a
trial. Grounded theory and computational methods underdeveloped for solving these
problems.

It is known that variation methods are one of the universal and effective methods
for solving both direct and inverse problems [9,10]. Variation methods are often used
for the numerical solution of inverse problems. The theory of variation formulations of
inverse problems proposed to develop in [2]. This approach developed and validated for
the typical productions of inverse problems of mathematical physics and other types of
equations, including the equations of quantum theory. In addition, the results found
different applications. The variation formulation of the inverse problem of quasioptics
considered in this paper using the advantages of independent significance of variation
formulations of inverse problems. This raises a number of traditional questions about
the relationship of variation and unvariation problems of the rule of selection the pa-
rameter α ≥ 0 and the element ω∈H, about the recommendations of the numerical
algorithm for solving the inverse problems, about attitude of variation formulations of
inverse problems with the corresponding optimal control problems, and others. These
issues interrelated and in the roots of most of them is incorrect setting this class of
inverse problems.
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We just note that the numerical parameter α ≥ 0 play a role of the regularization
parameter in some cases. However, the theorems proved in section 2 and the results of
[2,3], and others indicate that this parameter plays a deeper role in these tasks.
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