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INVERSE SCATTERING AT HIGH ENERGIES
FOR A CLASSICAL PARTICLE IN A LONG RANGE FORCE FIELD

A.Jollivet

Abstract We define scattering data for the Newton equation in an electromagnetic field
(-VV,B) € CY(R",R") x CY(R", A,,(R)), n > 2, that decay at infinity like r=*~! for some
a € (0,1], where A, (R) is the space of n X n antisymmetric matrices. We provide their high
energies asymptotics and we prove, in particular, that the scattering data at high energies
uniquely determine the short range part of (VV, B) up to the knowledge of the long range
part of (VV, B). Other asymptotic regimes are also considered. This paper extends similar
results for a short range force field [Jollivet, 2009] or for a long range electric (or gravitational)
field |Jollivet, 2013|.
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1 Introduction

Consider the multidimensional Newton equation in an external and static electromagnetic
field:
B(t) = F(z(t),2(t) := =VV(x(t) + B(x(t))i(t), (1.1)

for z(t) e R", t € R, n > 2 where &(t) = %x(t), and where V € C?(R",R), B(x) is the n x n
real antisymmetric matrix with elements B; ;, 1 <4,k < n, and where B satisfies the closure
condition

0 0 0

T%Bk,m(.%) + %Bz’,k(l’) + 87:k

for x € R™ and for i, k,m = 1...n. For o € (0,400) we will denote by B(0,0) (resp. B(0,0))
the open (resp. closed) Euclidean ball of center 0 and radius o.

When n = 3 the equation (1.1) is the equation of motion of a particle of mass m = 1 and
charge e = 1 in an external electromagnetic field described by (V, B) (see, for example, [8,
Section 17]). In this equation, z, &, & denote the position, the velocity and the acceleration
of the particle respectively, and ¢ is the time.

We also assume throughout this paper that I satisfies the following conditions

Bpmi(z) =0, (1.2)

F=F'+F3 (1.3)

where F!(z,v) := —~VV!(z)+B!(z)v, F*(z,v) = —VV*(2)+B*(z)v and (V!,V*) € (C%(R",R))?,
(B!, B®) € (C*(R", A,(R)))?, and where

08V (@) < Bl (L + [al)~@HID (05 B (2)] < Bl (14 [a)"@HERD (1)

DV (@)] < Bl a1+ [2) T D (02 B3 (2)] < B, (L + [2) @ (15)
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for z € R", |j1] < 2 and |j2| < 1 and for some o € (0,1] (here j is the multiindex j =
(... 3™) € (Nu{op)™, [4] = Som_1 4™, and B., and 3%, are positive real constants for
m = 0,1,2 and for m’ = 1,2,3). Although our electromagnetic fields are assumed to be
smooth on the entire space, our study may provide interesting results even in presence of
singularities. For equation (1.1) we recall that the energy

E = %\dﬁ(t)P + V(z(t)) (1.6)

is an integral of motion.

Set
dnmax(8l, By 1
Ry=—"-—"- =—+2(1 Ry. 1.7
0 o , W \/ﬁ + ( + \/ﬁ) 0 ( )
Then under conditions (1.4) the following is valid (see Section 4): for any v € R™, |v] > 1!,
there exists a unique solution z4 (v,.) of the equation

3(t) = Fl(2(t), 2(t)), (1.8)

so that
Ze(v,t) —v=o0(1), as t — 00, 2z4(v,0) =0, (1.9)

and
sup |2+ (v,.) —v| < Ry (1.10)
R

When F! = 0 then we have z4(v,t) = tv for (t,v) € R x R", |v| > %
Then under conditions (1.4) and (1.5), the following is valid: for any (v_,z_) € R™\B(0, u')

R™, the equation (1.1) has a unique solution x € C?(R, R") such that
2(t) = (v, 1) + 2 +y_ (1) (1.11)

where |§_(t)| + [y_(t)] — 0, as t — —oo; in addition for almost any (v_,z_) € R™\B(0, u!) x
Rn

)

2(t) = 2 (vr,8) + 24 + Y (1), (1.12)

for a unique (vy,r1) € R® x R", where |vy| = |[v_| > u! by conservation of the energy
(1.6), and where vy =: a(v_,z_), x4 =: b(v—_,x_), and |y ()| + |y+(¢t)] = 0, as t — +oc.
A solution z of (1.1) that satisfies (1.11) and (1.12) for some (v_,z_), v— # 0, is called a
scattering solution.

We call the map S : (R™\B(0, ui!)) x R® — (R™\B(0, u!)) x R™ given by the formulas
V4 :CL(U_,.’E_), Ty :b(v_,l‘_), (113)

the scattering map for the equation (1.1). In addition, a(v_,z_), b(v_,z_) are called the
scattering data for the equation (1.1), and we define

asc(v_,x_) =alv_,x_) —v_, bs(v_,z_)=bv_,z_) —x_. (1.14)

Our definition of the scattering map is derived from constructions given in [3, 1|. We refer
the reader to [13, 3, 14, 9, 1] and references therein for the forward classical scattering theory.

By D(S) we denote the set of definition of S. Under the conditions (1.4) and (1.5) the map
S :D(S) — (R™\B(0, u')) xR™ is continuous, and Mes(((R™\B(0, u')) xR")\D(S)) = 0 for the

Lebesgue measure on R” x R™. In addition the map S is uniquely determined by its restriction

X
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to M(S) = D(S)NM and by F!, where M = {(v_,2_) e R* xR" | v_ #0,<v_,z_ >=0}
and < .,. > denotes the canonical scalar product of the Euclidean space R™.

One can imagine the following experimental setting that allows to measure the scattering
data without knowing the electromagnetic field (V, B) inside a (a priori bounded) region
of interest. First find an electromagnetic field (V, B!) that generates the same long range
effects as (V, B) does. Then compute the solutions z4 (v,.) of equation (1.8). Then for a
fixed (v_,z_) € (R™\B(0, u')) x R™ send a particle far away from the region of interest with
a trajectory asymptotic to z— + z_(v_,.) at large and negative times. When the particle
escapes any bounded region of the space at finite time, then detect the particle and find
S(v—,x_) = (v, z4+) so that the trajectory of the particle is asymptotic to z4 + z4(v4,.) at
large and positive times far away from the bounded region of interest.

In this paper we consider the following inverse scattering problem for equation (1.1):

Given S and given the long range tail F' of the force F, find F?. (1.15)

The main results of the present work consist in estimates and asymptotics for the scattering
data (asc, bsc) and scattering solutions for the equation (1.1) and in application of these
asymptotics and estimates to the inverse scattering problem (1.15) at high energies. Our
main results include, in particular, Theorem 1.1 given below that provides the high energies
asymptotics of the scattering data.
Consider
TS 1= {(0,2) € S xR" | <6,z >=0},

and for any m € N consider the x-ray transform P defined by
+oo
PF(6,2) ::/ F(t0 + z)dt

for any function f € C'(R™,R™) so that |f(z)| = O(\x!fﬁ) as |z| — +oo for some 3 > 1.
Set

W(v,2) = / / (VV' (oo (0,7) + @) — V(2 (v,7)))drdo (1.16)

N /(; /Oo (Bt 4ot [ ) A (B (0,) 4 1) B (0,92))2 (s2)dsads)

—B'(z_(v, T))) Z_(v,T)drdo

/ / +93)(/T (BZ(Z—(U,TI) + z) — BY(z_(v, 77))) (v, n)d77>d7'da

—00

“+oo “+oo
l l
+ /0 / (VV(24(a,7) +b) — YV (24 (a, 7)) drdo

+oo oo +oo
[ [ B een ([ (Bestam +5) = By am) 2 (o) drdo

T

+0o0 +oo +oo  ptoo
/ / z+a7' +b+/ / (BY(z4(a, s2) + b)

—B'(24.(a,52)))%+ (0, 52)dsads1) — B'(24.(a,7)) ) 24 (a,7)drdo,

for (v,x) € D(S), In (1.16), a(v,z) and b(v,x) are shortened to a, b. The vector valued map
W' is known from F' and from the scattering data. Then we have the following asymptotic
results.
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Theorem 1.1. Let (§,z) € TS" 1. Under conditions (1.4) and (1.5) the following asymp-
totics are valid

asc(pl, x) = o B(70 + 2)0dr + p~' ( — P(VV)(0,2) + Wi(B', B*,0,z)) + o(p™ "), (1.17)

—0o0

as p — +oo, and

bee(ph,z) = W'(pb,z)+p~ 1(/ / B(10 + z)fdrdo

+oo +oo
—/ / B*(10 + x) HdeG + P / / —VV*) (10 + z)drdo
0
+oo +oo
o

as p — 400, where

(—VV*) (10 + z)drdo + Wa(B', B, 8 x)) to(p72),  (1.18)

Wi(B', B%,6,2) = /B(Tt9+x)(/T B(00 + z)0do)dr
R

+Zek/(<v3J”9+x/ / B(nf + )
k=1 VR

—Bl(nﬁ))ﬁdnda—i—/ / Bl(nﬁ)ﬁdnda>)‘ ) dr, (1.19)
0 J—co j=1l..n

and

0 o T
Wy(B', B%,0,z) = / / B*(10 + x)(/ B(nf + z)0dn)drdo (1.20)
+o0o +o00 e T -~
- / B*(16 + x) (/ B(n + x)0dn)drdo
0 o —00
0 o T
+ / / B(76 + ) (/ B?(nf + :E)@dn) drdo
_—tooo _O—T-oo _oo+oo
+/ Bl(70 + ) (/ B?(nd + x)@dn) drdo
0 o T
n 0 o T n1 ;
+ Z O / / (<VB;7,€(70 + ), / / (B(n20 + ) — B'(n20))0dnadm
k=1 —00 J —00 —00 J —0O0
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T m
T / / Bl(me)edmdm), drdo
j=l..n
m
0 Bl (r0 B (126 + 2)0dnad drd
+Zk/ / V 7’+93/ / (720 + ) 7727)1>)1 rdo

j=

+oo +oo 1
- Z O, / / (VB (70 + ) / / B(120 + x) — B (n20)) dnadi

m
+ / / Bl(nge)edmdng) drdo
j=l.n
+oo +oo
—Zek/ / <V k79+;1:)

+oo
/ / S (120 + x)@dngdm)) drdo.
. .

From (1.17) and [4, Proposition 1.2] and inversion of the x-ray transform (see [12, 2, 10, 11])
it follows that F'* can be reconstructed from the high energies asymptotics of as. and F'. From
(1.18) one can prove the following statements (see [4, Proposition 1.2] and [7]): The magnetic
field B* can be reconstructed from W' and the high energies asymptotics of by, when n > 3,
and when n = 2; The potential V* is uniquely determined by W', B! and the high energies
asymptotics of bs. when n > 3; The potential V* is not uniquely determined up to its radial
part by W!, B! and the high energies asymptotics of by, given above when n = 2.

Theorem 1.1 is a generalization of [4, formulas (1.10)-(1.13)] where inverse scattering for
the multidimensional Newton equation was studied in the short range case (F! = 0).

Inverse scattering at high energies for the multidimensional Newton equation in a short
range potential V' was first studied by [11]. Then inverse scattering at high energies for this
latter equation in a long range potential V' was studied by [6]. We develop the approach of
[11, 6] to obtain the results of the present work.

A similar study was done for the multidimensional relativistic Newton equation in a long
range electromagnetic field [7]. However in our opinion there is an interesting difference be-
tween the high energies asymptotics of the scattering data of the nonrelativistic and relativistic
Newton equations. Indeed the high energies asymptotics of the velocity component a” of the
scattering map for the relativistic Newton equation is [7, Theorem 1.1]:

L (p8,2) = ) = ~P(VV)(6,) + | ™ B(r + yodr + o<ﬂ>,

-2 oo

as p — ¢, p < ¢, and for any (0,z) € TS"!, where ¢ > 0 denotes the speed of light. Hence
the leading term of the above asymptotics depends on both magnetic and electric fields B
and —VV,| whereas in the nonrelativistic case the leading high energies term of a,. depends
on the magnetic field B only (and is independent of the electric one). This difference is quite
interesting in our opinion.

For inverse scattering at fixed energy for the multidimensional Newton equation, see for
example [5] and references therein. For the inverse scattering problem in quantum mechanics,
see references given in [4].

Our paper is organized as follows. In Section 2 we transform the differential equation (1.1)
with initial conditions (1.11) into an integral equation which takes the form y_ = A(y_). Then
we study the operator A on a suitable space (Lemma 2.1) and we give estimates for the de-
flection y_(¢) in (1.11) and for the scattering data asc(v—,z_), bsc(v—,x_) (Theorem 2.1). We
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provide the Born approximation of the scattering data at fixed energy £ = % We will always
work with small angle scattering compared to the dynamics generated by ' through the “free"
solutions z_(v_,t): In particular, the angle between the vectors &(t) = 2_(v_,t) + y_(¢) and
#_(v_,t) goes to zero when the parameters 3 := max (8%, 85, 85, 33), @, n, v_/v_|, x_ are
fixed and |v_| increases. In Section 3 we change the definition of the scattering map so that
one can obtain for the modified scattering data (@se(v_,x_), bse(v_, x_)) their approximation
at high energies, or their Born approximation at fixed energy, or their approximation when
the parameters «, n, v_ and (3 are fixed and |z_| — 4o00. This latter asymptotic regime is not
covered by Theorems 1.1 and 2.1. Sections 4, 5 and 6 are devoted to proofs of our Theorems

and Lemmas.

2 Scattering solutions

2.1 Integral equation

For the rest of the text we set

By = max(B},53), B :=max(8], 5, 53). (2.1)

For the rest of the text H(f(r), (7)) is shortened to H(f)(r) for any (f,7) € C*(R,R") x
R, where H stands for F, F* or F'.

Let (v_,z_) ER" xR, < v_,r_ >=0and |v_| > p!, where y' is defined in (1.7). Then
the function y_ in (1.11) satisfies the integral equation y_ = A(y_) where

A(f)(t) = / A(f)(o)do, (2.2)

—0o0

A(f)(t) = /_ (F(a—(v,.) +2— + f)(7) = F'(z-(v-,.)(7))dr, (2.3)
for t € R and for f € CY(R,R"), SUPye (—o0,0] ([ (D] + \tHf(t)]) < oo. We have A(f) €
C?*(R,R") for f € C(R,R") so that SUPe(—o0,0) (| F (D) + [ f(2)]) < 00 (see (4.2) and (4.3)).
Let R € (0,400) we set

R = Ry + R, (2.4)

where Rg is defined in (1.7). Let » € (0,1). For |[v_| > u!, |[v_| > V2R/, we introduce the
following complete metric space Mg, endowed with the following norm .|

My, =1 € AR R | If] < RY, (25)
U1 = max (s o (1, (175 (L= RO, s 17,
vl
(7 R)(sgfo)m). (2.6)

The space Mg, is a convex subset of C1(R,R™). Then we have the following estimate and
contraction estimate for the map A restricted to Mg,
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Lemma 2.1. Let (R,r) € (0,400) x (0,1). Let (v_,z_) € (R"\B(0, u!)) x R,
<wv_,z_ >=0, |[v_| > max (ul, V2R + V2R(1 + 1~ )) Then the following estimates are
valid

HA(f)H < )‘1(” a?ﬁiw@%u | ’1) |7T) (2'7>
o, D1+ Ba(lo—| +2) (1 + Va(jv-| + R)
a(\v—\ R’)( — p)ortl

)

=
and
[ACf1) = A(f)| < Xaln, o, B, [v—|,r) || f1 = fall, (2.8)
Ny oo B0+ )’ (14 LE L+ Ry
a4 - R)(1-7)e bl — R ’

fO'f’ (fv f17f2) € MIB%J"'

A proof of Lemma 2.1 is given in Section 5.
We also need the following result.

Lemma 2.2. Let (R,7) € (0,400) x (0,1). Let (v—,z_) € (R™\B(0, 1)) xR", <v_,z_ >=
0, [v_| > max (4, V2Ro + V2R(1 +r')). When y_ € Mg, is a fived point for the map A

then x := z_(v—,.) + z_ + y_ 1is a scattering solution for equation (1.1) and

2(t) = 24 (av-, 2),8) + b(v_, ) + 4 (1), (2.9)
fort >0, where
+oo
a(v_,x_) :==v_ +/ F(z)(r)dr, (2.10)
b(v—,z_) :=z_ +y-(0) — y+(0), (2.11)
+oo +oo
/ / — Fl(zy(a(v_,2_).)))(r)drdo, (2.12)
fort>0.
Lemma 2.2 is proved in Section 4.
Note that ,
14”(("” 7)o (2.13)
B w

when |v_| > ﬁ + (1 +2v/2)R'. Then we obtain the following Corollary of Lemma 2.1.

Corollary 2.1. Let x_ € R™ and let r € (0,1). Set

_ 23n2f(lz_| +2)
R := ol =)o (2.14)
and
plon Bor|o—|) = pl + (1 +vV2(1+7r7"))R + 16[??9;@3‘5%). (2.15)
Then for any v— € R™ so that
o] = pla, B, 7 [z-]), (2.16)

the map A defined by (2.2) and (2.3) is a %—contmction from Mg, to Mg,.
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2.2 Estimates on the scattering solutions

In this Section our main results consist in estimates and asymptotics for the scattering data
(ase, bse) and scattering solutions for the equation (1.1). Let (v—,z_) € D(S). Set

+o00
Av_,z_) = as(v_,z_)+ VV(rv_ +z_)dr (2.17)

—00

[T va (ot [ Blv b odo)ir - Wiooa),

where - o
W(vo,z):= /:o (B(z_(T) +z_ (2.18)
+/_; /_S; (B(2—(s2) + 2-) — Bl(Zf(SQ)))Z,(SﬂdSQdSl) — B(tv_ + x,))v,dn
and set

0 o
Qu_,z_) = bs(v_,z_)—Wov_,z_ / / Fé(w_ +a_)(r)drdo (2.19)

/m/mps (- +az_)(r dea/ / B (rvo_ + )

+oo +oo
/ B(sjv— +x_)v_ dsldeU—{—/ / B¥(tv_+z_)
— 00

(/ B(siv— + x_)v_dsl)dea — W (v_,z_)

—00

where W' is defined in (1.16) and

Whe(v_, x_ / / BS )+ (2.20)

t /TOO /OO (B(2—(s2) +x-) = Bl(z—(52)))2’_(82)d82d81) — B¥(tv_ + Jj_))q)_deo-

n / / (B ot [ (Bt o) = Bl ()2 (s2)dsad)

—B'(z_(1) +a_ +/ / (B (2—(s2) +a_) — Bl(z_(SQ)))é_(SQ)dSstl)>z'_(7')d7'da

/ / v ([ B b o) (s )ardo
_/0+oo /:OO(BS(z )+ —i—/ / x_) — B'(2-(s2))) 2—(s2)dsads1)

+o00 “+o0o
—B%(Tv_ + x_)>v_d7da - /0 /a Bl(z+(a, T)+ x4
+o00 +oo
+/ / (B(24(a, s2) + z4) — Bl(zy(a, 52))) 2+ (a, s2)dsads1) — B! (z4(a,7) + 24
+o0 +oo
—i—/ / Nzt (a,s2) + 24) — B'(24(a, 52))) 4 (a, 32)d32d31))73+(a, T)drdo
+ +oo

o] +o0o
+/ Bl(zy (a,T +x+)</ B*(z4+(a,n) —I—a:+)z"+(a,77)dn)d7'da.
0

T
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(In (2.18) and (2.20) we shorten z_(v_,.) and a(v_,z_) to z_ and a, and we sometimes write
x4 for b(v_,x_) in the text. Vectors W and W depend on S, F!' and B*. Then we have
the following result.

Theorem 2.1. Let (v—,xz_,r) € R" x R" x (0,1) so that < v_,z_ >= 0 and so that (2.16)
is satisfied. Denote by y_ the unique fized point of the map A in Mg, where R is defined by
(2.14). Then the following estimates are valid:

2503 Ba(lr_| +2)

- ()] < - — (2.21)
(a+1)(1—r— (5 - r))
fort <0,
7 3
' 22n2 0y (Jx—| +2)
_| < 2.22
o2 = e 222
In addition
9 l
|ase(v—,z_)| < L;\" _ (24 & ) (2.23)
(1—1—\/5—7') o (oz—i—l)(l—l—ﬁ—r)
7 3
bao(v a0 )| < — 222 Balle-|+2) (2.24)
ala+ 1) - ) (1 -r)e
5 3
194 (t)] < 222 Bl | +2) (2.25)
Y+ = _ M_ Ayat+l) .
(a+1)(1-r+t(5 - R))
fort >0, and
600n35%(1 + R + |z—
Aoz < X0 P =) (2.26)
O[Q(W — RN2(1 — r)20+3
700n382%(1 + R (1 + |z
Qo) < 1+ R)A+ o)) (2.27)
QQ(W _ R/)3(1 _ T)2a+2
Theorem 2.1 is proved in Section 6.
. . o l
2.3 Born approximation at fixed energy F = ;

Estimates (2.26) and (2.27) also provide the asymptotics of the scattering data (as.(v, ),
bse(v, 7)) when v € S" !, 2, n and « are fixed and 3 goes to 0, i.e. they provide the Born
approximation of the scattering data at fixed energy E = % In more details, we have

a0, 1) = —P(VV)(0, 2)dr + / " B0+ 2)dr + O(5?), (2.28)
and
bee(0,2) = WY O,z)+ / ' / ’ B%(16 + z)0drdo (2.29)

+oo  pt+oo 0 o
- / / B*(16 + x)0drdo — / / VV3(10 + x)drdo
0 o —o00 J —00

“+oo —+00
- / VVE(10 + z)drdo + O(8?), (2.30)
0 o
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for (0,2) € TS" 1, as B — 0T. Then for the recovery of the force field from the Born approx-
imation at fixed energy of the scattering data we have (see [7]): one can reconstruct the force
field (VV, B) from the Born approximation of as. at fixed energy; The Born approximation
of by at fixed energy and W' determine V* , and they uniquely determine B* when n > 3,
and they uniquely determine B® up to magnetic fields that are spherical symmetric in each
of its components when n = 2.

3 Further comments

For a solution x at a nonzero energy for equation (1.1) we say that it is a scattering solution
when there exists € > 0 so that 1+ |x(t)] > (1 + |t]) for ¢t € R (see [1]). In the Introduction
and in the previous Section we choose to parametrize the scattering solutions of equation (1.1)
by the solutions z4 (v, .) of the equation (1.8) (see the asymptotic behaviors (1.11) and (1.12)),
and then to formulate the inverse scattering problem (1.15) using this parametrization. We
obtain the estimates (2.26) and (2.27) from which are derived the high energies asymptotics
and the Born approximation at fixed energy of the scattering data. However these estimates
do not provide the asymptotics of the scattering data (as.(v, x), bs.(v, 2)) when the parameters
a, n, v and ( are fixed and |x| — +o00. Motivated by this disadvantage, we introduce below a
new family of “free" solutions z4 (v, x,.) of equation (1.8) that will be used for parametrizing
some unbounded solutions of the Newton equation (1.1) at nonzero energy and for measuring
their deviation.
We set
_ 16max(B!, gh)n

1 o

Ro(o) : a(i—i-ﬁ)o‘

(o) = ;ﬁ L 6(1 4 V) Ro(o), (3.1)

for o > 0. Let (v,x) € R" x R" so that < v,z >= 0 and |v| > g!(Jz|). Then for any

|v]

1 _ . . ,
) ) B » 9 ) - ) ’ I
(w,q) € B(v,=5) x B(0,35), |lw| = |v|, there exists a unique solution z4(w,z + ¢,.) of the
2

equation (1.8) so that
Zy(w,x 4+ q,t) —w =o(1) as t — o0, z4(w,x+¢,0) =2 + g, (3.2)

and
s%p\éi(w,:c—&—q,.) —w| < Ro(|x]). (3.3)

We will now define our modified scattering data. For (v_,z_) € R" xR", < wv_,z_ >=0,
so that [v_| > p!(|z|), then there exists a unique solution z € C%(R,R™) of equation (1.1)
such that

z(t) = z_(v_,z_,t) + y_(t), (3.4)

where |y_(t)| + |y—(t)] — 0, as t - —oo. The deflection y_ from “free” motion satisfies the
equation

y—(t) = / /U (F(z—(v—,z—,.) +y-) — Flz_(v_,z_, ) (7)drdo. (3.5)

One can adapt the study of the operator A given in the previous Section to study the integral
equation (3.5) in the complete metric space

My = {f € CHR,RY) | [[fll+ < R(jz)}, (3.6)
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where
/
R(lal) = ——0 R i= Ro([a) + R(lx). (37)
Oé(§ + ﬁ)
and
1l = max( swp max (L, (3 + 2 (L myu)ifa), su 1f1
tE(—O0,0) 2 \/§ \/ﬁ (0,+OO)
|
— —R) sup |f 3.8
(5 —®) sw 1f]) (3.8)
Then one can prove that for (v_,z_) € R" x R", <wv_,z_ >=0 and
18v2np3
o1 = alfe_]) = (i) + 10VR(e_[) + — 200
CM(Q + W)a

the unique solution z of equation (1.1) that is characterized by (3.4) also satisfies the following
asymptotics

z(t) = 24+ (a, Ba t) +y+(t), (3'9)

where [§4(¢)] + [y+(t)] — 0, as t — 400 for a unique (4, b) € R" x R". The map S defined
by S(v—,z_) = (v_ + @sc, T— + bsc) on the set

D(S) :={(v_,z_ ) ER* XR" | <v_,z_ >=0, [v_| > pu(lz_|)}

is our modified scattering map.

Then one can prove estimates for the modified scattering data (asc, bs.) that are similar
to the estimates (2.26) and (2.27) given in the previous Section. From these estimates on

(@sc, bse) we derive the asymptotics of the scattering data as |z| — +oo as well as their high
energies asymptotics and their Born approximation at fixed energy. For their asymptotics as
|x| — +oo we have

dse(ph, ) :/RFl(z_(v_,:c_,.))(T)dT+/R38(79+x)9d7—p_1P(VV8)(0,3:)—1—0(]3:\_(20‘“)),

(3.10)
and

B 0 o +oo  ptoo
Phee(pB, ) = / / B(+0 + 2)0drdo — / B (70 + 2)0drdo (3.11)
—00 J—00 0 o
0 o 400 p+oo
—p! (/ / VV3(r + x)drdo — / VVe(ro + x)deU) + O(|z| %),
—00 J —00 0 o

for p € (ﬁ, +00) and for § € S* ! < §,z >= 0. In addition the modified scattering data
have the following high energies asymptotics: for (6,z) € TS"!

asc(pl, ) = /+00 B(10 + z)0dr + p_l( — P(VV)(0,z) + W, (B', B, 9, 7)) + o(p™h), (3.12)

—0o0

as p — +o0, and
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_ 0 o +oo  p+oo
pbse(ph,x) = / / B*(16 + x)8drdo — / B*(16 + x)8drdo
0

0 g 400 ptoo
—i—p*l( — / / VV3(10 + z)drdo + / VV?(r8 + z)drdo
—o00 J—o0 0 o
+Wa(B, B*,0,2)) + o(p™), (3.13)
as p — 400, where

Wi(B', B%,0,z) = /RB(7'0+90)(/T B(o0 + x)0do)dr

+ Z Hk/ ( < VB, (10 + x),/ / B*(n0 + z)0dndo
/ / 0 + 2)0dndo > ) _dn, (3.14)
j=l..n
and
_ 0 o T
Wy (B!, B*,6,z) = / / B*(16 + x) (/ B(n + z)0dn)drdo (3.15)

/ / Bl(16 + ) / B*(n0 + x)0dn)drdo
+o0 +o0
/ / B*(t0 4+ x (/ B(nb + z)0dn)drdo

“+o0o +oo +oo
- / / B0+ z)( B*(nf + x)0dn)drdo
0

T

n 0 o T m
+Zek</ / < VBj(r0 +w),/ / B* (26 + x)bdnydm > drdo

/ / < VBj (10 +z / / Ynab + x)0dnydny > drdo

+o0 +oo +oo
/ / < VBZ k(70 + 1), / / B?(n20 + x)0dnedm > drdo

+o0 +o0
/ / < VB 7'0 + HZ / / B 7729 +x gdngdnl

/ Bs(nge + x)0dnadm > deO') .
—o0 J—o0 j=L.n

For the Born approximation at fixed energy of the modified scattering data we have

asc(pl, x) = o B(10 + z)0dr — p ' P(VV)(6,z) + O(3?), (3.16)

—0o0

and

5 0 o +oo +oco
pbsc(pl, ) = / / B*(16 + x)0drdo — / B*(16 + x)f8drdo (3.17)
—00 o0 0 o

0 o oo ptoo
e (/ / VVS(r0 + z)drdo — / VVE(r0 + :v)dfda) +0(8%),
—o0 J —0 0 g
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as 3 — 0T, and for p € (ﬁ, +00) and for (f,z) € TS*1.
Then results on the recovery of the short range part of the electromagnetic field from the
high energies asymptotics or the Born approximation at fixed energy of the modified scattering

data are similar to those given in Introduction (after Theorem 1.1) and at the end of Section
2.

4 Preliminary estimates and proof of Lemma 2.2

In the rest of the paper we use the following properties of the forces (F!, F'*):

[Fl(z,0)] < Biva+ |z~ (1 + Valu]), (4.1)
[F(z,0)] < B5vn(l+ J2)) 7721 + Valo), 4.2

|F!(z,0) = F'(«/, )] < npilo—2/| sup (1+|(1 - e)z +ea’)) 77 (4.3)
€€(0,1)
+nBhlz — 2’| sup (14 |(1— &)z +e2’|) " 2(1 + v/n|(1 — &)v + &v']),
€€(0,1)
Fo(@,0) = F@, o) < nBilo—v] sup (1+|(1—e)o e (44)
e€(0,1)
+nfBilz —2'| sup (1+|(1—¢e)z+ex'|)73(1 4+ vn|(1 —e)v + &),
€€(0,1)

for (z,2',v,v") € (R™)%.

In the rest of this section we first prove the existence and uniqueness of the solutions z
(similarly one can prove the existence and uniqueness of z_). Then we give some properties
of the solutions z_. Finally we prove Lemma 2.2.

Let us prove the existence and uniqueness of the solutions z;. Let v € R, |v| > p!. Let
V be the complete metric space defined by

Vi={f e C'R,R") | f(0)=0and sup|f| < Ry, },
R

endowed with the following norm || ||y := supg | f|, where Ry is defined in (1.7). Note that V
is a convex subset of C1(R,R"). For f € V we define G(f) € C%(R,R") by

G(f)(0) =0, G(f)(t) :== — o F'(w+ f)(r)dr for t € R, (4.5)
t
We use the following estimate (4.6)
7o+ f(7)| = [ro] = [f(7)] = (lv] = Ro) 7], (4.6)

for 7 € R and f € V. Using (4.1) and (4.6) we obtain that

- ! 0 (14 Vnlv + f(n)dr _ 28iv/n(1 + vn(|v| + Ro))
GO < ﬁ“/ﬁ/t (1+ (|v| = Ro)|7[)** : a([v| = Ro) < Ro, (A7)

for t € R (we used the definition of Ry and the inequality |v| > ul).
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Now let (f1, f2) € V2. Using (4.3) and (4.6) we have

! ! nf| .
B o+ ) = Filo+ I < s gyt sup M = 2l

B V(o + RoIr| (= £2)(5)]
I+ (ol = RITD™ scmyoy 1]

_ B+ Gl (4 VAl + Ro))

=+ (ol = Ro)lrl)etT

1f1 = fallv, (4.8)

for 7 € R. Therefore we obtain

nﬁl (o= RO)(1+\F(|UH’ 0))

IG(f)(t) = G(f2) ()] <2 ool = Ro)

1f1 = fellv, (4.9)
for t € R.

From (4.7), (4.9) and condition |v| > p! it follows that the operator G is a i-contraction
map from V to V. Set zy(v,t) = tv + f(t) for t € R, where f denotes the unique fixed point
of G in V. Then z4(v,.) satisfies (1.8), (1.9), (1.10).

We will use the following properties of the solutions z4.

Lemma 4.1. Let (p,0) € [p!, +00) x S*"L. Then we have

22 (06, 2) < Bolsl s em. (4.10)
p p
In addition for (s,0) € R x S"~! we have
li - —~ BY( 4.11
p;rpr(z (pb, p) s9) / / (uf)fdudo. (4.11)

Proof of Lemma 4.1. The estimate (4.10) follows from (1.9) and (1.10). The limit (4.11)
follows from (1.10), (4.10) and the identity

o= (pe ) sb) // _VVi (pe,%))+Bl(z,(pa,%))z’,(pe,%))duda, (4.12)

that holds for (p,6) € [u!, +00) x S*~L. O
To prove Lemma 2.2 we need the following standard lemma.

Lemma 4.2. Let x € C?(R,R") satisfy equation (1.1) and let = € C%(R,R") satisfy equation
(1.8). Assume that there exists v € R™, v # 0, so that ©(t) — v and 2(t) — v as t — 4o0.
Then

sup |z —z| <oo and sup (1+1t)|z—2[(t) < oco. (4.13)
(0,4-00) te(0,400)

Proof of Lemma 2.2. We need the following preliminary estimate (4.16). Observe that for
f € MR,T

R
sup [ f] <

(70070) ‘U\f‘ R/ -

(4.14)

=3
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From the formula g(7) = g(0) + [, g(s)ds for g € C*(R,R") it follows that
(1= f2)(7)] < (sup M= Rl lrl swp 1fi = fol for T € R, (4.15)
—00,0 0,400

and for (f1, f2) € MIQM. Hence

o e £ 2 ot o= (o)== 1) 2 S erirl (- ), (o)

for (f,7) € Mg, x R and for any € R" so that < x,v_ >= 0. We used the inequality
w4 rv_| > 12 7 TI7] ‘U’Q‘ (< @, v- >=0) and (4.15) (for (f1, f2) = (f,0) and f € Mgp,), (4.14)
and (1.10).

Hence the integral fj;o F(z_(v—,.) + x— + f)(7)dr is absolutely convergent for any
f € Mg,. And when y_ € Mg, is a fixed point for A then z_(v_,.) + z— + y_ satis-
fies equation (1.1) (see (2.2) and (2.3)) and Z_(v_,t) + §_(t) = v_ + [ F(z_(v_,.) +
x_ +y_)(T)dT — a(v_,x_) as t — +oo, where a(v_,x_) is defined in (2.10). Then from
Lemma 4.2 it follows that sup( oo l2—(v—;.) + 7— +y- — z(a(v—,z-),.)] < +oo and
SUPte(0,400) (1 + 8) |2 (v, t) + §—(t) — 21 (a(v—,2-),t)| < oo, and the 1ntegral on the right
hand side of (2.12) is absolutely convergent. Then the decomposition (2.9) follows from the
equality A(y—) = y— and straightforward computations. O

5 Proof of Lemma 2.1

We shorten z_(v_,.) to z_ in this paragraph.
We first prove the estimates (5.4), (5.5) and (5.7) given below. Let f € Mp,. Using (4.2)
and (4.16) we have

VnBa(1+ vn(jv-| + R'))

[F*(2- +ex—+ f)(7)| < T . a2 (5.1)
(1+ L= —r 7|5 - rY))
for 7 € R and for € € [0,1]. Then from (2.3) it follows that
t
AD@I< [ PG+ o+ i) - e, (5.2

for t € R. Using (4.3) and (4.16) we obtain

< nBt|fi — fol (1)
< (1*7"+le[‘ + (Ivfl l)|7-’)oz+1
+nﬁ2((1*ﬁé)!$f|+|f1* Fl(T)) (1 + vasupee 12 +efi + (1 — ) fa)

|lz—|

(1—r+plg + (B — Rt

[F! (2 2+ fi)(7) = F' (e + pa— + fo)(7)

for (f1, f2) € M]%,'r and for (r,u) € R x [0,1]. We integrate (5.1) and (5.3) over (—oo,t),

and we use the estimates |f(7)| < 7 and |f(7)| < R(1 —r + (% R

SUP(_o0,0) |f| < R, and we obtain

iR+ nfa(vVa(lz-| + 1) +1) (1 + vn(lv-| + R)
\

(Oé-i—l)(‘vf‘ R/)( _ —(%—R)t)a—H

A ()] < : (5:4)
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nBiR+ Vnpa(vVn(jo—| +7) + 1) (1+ Va(jv_| + R)))

A <
|ACS)(@)] (O“"l)(l\[l R') ( o (|i)f| R’))

: (5.5)

for t <0.
Let t > 0and |v_| > v2R'. Integrating (5.3) over (0, ¢) and using the estimate SUP (0,4 00) If] <
R, and (4.15) (for (f1, f2) = (f,0)), we obtain

/ [Pzt 2+ f)(r) — Fl(=_)()|dr (5.6)
) nﬁ1R+nﬁ2 ‘TffR (1+\f(|v—|+R,)) +nﬁg(‘:ﬁ_‘+T)(1+ﬁ(‘v_‘+Rl))
N a('ff' R’) (l—r)"‘ (()44—1)('”\}' R’)( —r)otl '

Hence combining (5.2), (5.1) integrated over (0,t), (5.6) and (5.4) (at "t = 0") we obtain

| B R+ nfyt— (1+ Vn(jo-| + R'))
[ANH@)] < -

ol - R) (L=

+nBiR+ Qﬁﬁg(\/ﬁﬂx | +7‘) + 1) (1 + vn(lv—| + R’)).

(+1) (1% = R) (1 = 7)ot

(5.7)

Then estimate (2.7) follows from (5.4), (5.5) and (5.7).

Now we prove the estimates (5.10), (5.11) and (5.13) given below. Estimate (2.8) follows
from those latter estimates. Let |v_| > v2R', and let (f1, f2) € M3 . From (4.4) and (4.16)
it follows that 7

nBaolfi — fol (1)

r 4+ |9\6[| + (Ivfl Rl)‘7-|)a+2

|F¥ (2 e+ f1)(1) = PPz + 2+ fo)(7)] < i

+nﬁ§\fl—f2\( ) (14 Vrsup.cqy |2 +efi(r) + (1 — ) fo(7)))

(1—r+ 4 (Bl — R

(5.8)

for 7 € R. We integrate (5.8) over (—oo,t), and we have

/ F* (o 43+ fi)(7) — Fle +a_+ fo)(r)]dr

—00

<

/t nBy$UD.e (oo 0) (1 = 7+ (5 = R))[s)|f1 = fol(s)dr

. (1=7+ (85 = Rt

+/t nB5(1+ vn(lv-| + R')) sup(_oo o) | f1 = foldT
o0 (1 =7+ (%l - R)|r|)o+s

n (B2 + 05 TG | i — o

= - . (5.9)
(a4 2)(|1\’[| R/) (1 —r 4 (|1\1[| R/)|t|)a+2
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An estimate similar to (5.9) holds for F! in place of F**, and combining these two latter
estimates we obtain

' ' n|.fi — foll
A(F)() = A(f) ()] <
[A(f(E) = A(f2)(?)] (\v\é\ “R)(1-r+ (‘i}f‘ R Jt])o+t
5l + By 1+\f(\v |+R") By +B31+\f [v_|+R')
7 =
. (o +1) i (+2)(1—r+ (1 - R/)m)>’ (510)
nllfi — fall
[A(A) (@) = A(f) ()] <
' ’ (a+ (I~ R (1 v+ (B = RY)Je)e
ﬂl + By 1+\f |” [+R) s +le+f lv_|+R')
gl -
) a " (a+2)(1—r+ (‘”f‘ R’)yty)) (G110

Let t > 0 and |[v_| > V2R, r < 1, and let (fi, fa) € MR’T. We integrate (5.8) over (0,1),
and we use the estimate (4.15), and we have

102 SUD(0 4 o0) ’fl - f2’

(a+1)(lf[| R)(1 T+%)a+1

/0 F(s_ o+ f)(r) = P+ + fo)(r)]dr <

3 SUp(_oo0) 1f1 — fol (1 + v/n(jv-| + R)))
(a+2)(1% - )(1 rt
133 SUP (0, 400) fi— (l—i—f |v |+ R)))

(oz—i-l)(‘i’f\ R’) (1 r+%)a+1 '

(5.12)

A similar estimate holds for F! in place of F*. Then combining these two latter estimates
and (5.10) (at “¢ = 0”), we obtain

i n| fi— fol 2
AG)() — A2 (0)] < - R/)(l_ﬂa((wz)(l—r)?
L Bt Bl 1+ Va(lv-|+R)

(a+1)(1—-7r) « (\7\7\ R')

a+2)(1-7)2 (a+1)(1-7r) «

6 Proof of Theorems 1.1 and 2.1

Proof of Theorem 2.1. We shorten z_(v_,.), asc(v—,z_), a(v_,z_) and bs.(v_,z_) to z_,
asc, a and bg. in this proof.We also sometimes write x4 for b(v_,z_). Computations smnlar
to (5.4) show that

nﬁi Sup (—o0,t) ’y—‘

su | = sup |A(y )| <
(—ooI,)t) ‘y ’ (—ooI,)t)| (y )’ > a(‘yf‘ R)(1— 7)o
VB (vn(|z— !+r)+1)(1+f<\vf!+R’>)
+ o] o] afl (6.1)
(04+1)(f R)(1- (\[ R)t)
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Hence using condition (2.16) we obtain

1 . nBa(|z—| +2)(1 + vn(jv-| + R')
3 sup [y-| < [o_| , ( [v_| ) ) a+1? (6.2)
(—o0,t) (a+)(\5 —R)(1-r-(F - R)Y)
which gives (2.21) (we also use (2.13)). Computations similar to (5.7) show that
(2081 + 22— (1+ V(-] + R)) )
suply—| < suply| T .
L 2VAB(yla-] 1) + 1) (L+ Va(v-| + R) 63

(a+ 1)(‘“73‘ — R)(1 —r)o+!
Then we use condition (2.16) and (2.13), and we obtain (2.22). The estimate (2.23) follows
by integrating over R both sides of the estimate (5.1) (“(e, f) = (1,y—)") and both sides of
an estimate similar to (5.1) with F! in place of F*.
Now we prove (2.24) and (2.25). We rewrite y; as follows
Uy = ho + hq, (6.4)

where
+o0
mot) == [ Pty )i
+o0o
ha(t) = — /t (Flo- + 2 +y) — Fl(z4 (a,.))) (7)dr, (6.5)

for t > 0. We estimate hg. We also need the following estimate (6.7). For ¢, &' € (0,1) and
7 > 0 we have

(1= &)(z-(7) + y-(7)) + €24 (a,7) + &'z

> e +To_| -1 —=¢e)o—(r) —Tv_| = (1 —€)RT — 1
—e|zy(a, ) — Ta| — elas|T
2| v |
> 2 —r 4+ 7 (= —Ry+ (1 —¢)R) — €lag|T. 6.6
\/§ ( ﬁ 0 ( ) ) | sc| ( )
We used (1.10) for “v"= v_ and for “v"= a (by conservation of the energy |v_| = |a|). Then

we use (2.16), (6.6) and (2.23), and we have for (¢,¢’) € (0,1)? and 7 >0

(1—¢e)(z_ (1) +y_(7)) + ez (a,7) +x_| > 5"3—; —r+ T(|U\/_§| - R)). (6.7)

From (5.1) it follows that

+o0
ho(t)] < / F*(ee + 2+ y_)|(r)dr
_ B3/l + va(lv_| + R))

(a+ 1)(% — R)H(1+ % —r+ (% _ R/)t)aﬂ’

(6.8)
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for t > 0. Now set
v_ .
50 = swp -1+ (R (s), b= sup et usl  (69)
SE(t,+00) \@ (0,+00)

for ¢ > 0. We remind that d;(¢) and J2 are finite by Lemma 4.2 (for “(z,2)"= (2— + z_ +
y—,z4(a,.))). Then we use (4.3) and (6.7), and we obtain

/+°° nB01(t) + (0 + |z (1 + V(o |+ R))

(1— T+T(|vf| R'))oct2

nB101(t) + nph(d2 + lz—) (1 + va(lv-| + R))

(0‘+1)(|:}[| R)(1 r+t(‘”f‘ R))att

for t > 0. Hence combining (6.4), (6.8) and (6.10) and condition (2.16) we have
51t) _ (802 + [o]) + VB + V(-] + R) o)
2 (a+ 1) = r) (1 =7+ - r))"
for t > 0. In addition from (2.11) and (6.2) it follows that

2nBa(|lz—| 4+ 2) (1 + v/n(jv- \+R')‘
ala+1)(% - R)*(1-r)"

[ (4)]

IN

(6.10)

(6.12)

[bse +y+(0)] = [y-(0)] <

Then we use the estimate (6.12) and the estimate (6.11) that gives an estimate on |y (t)| for
t > 0, and we obtain

205 (93 + 2fw—| +3)(1 + vn(|v-| + R'))

9o < o] (6.13)
ala+1)( — R0 1)
Using twice condition (2.16) one has
1 2 2 1 !
L5, < 2o+ B0 Vi £ R) v 6.1
ala+ (I — R - 1)
Then 02 < r, and from (6.11) and (6.13) we have (2.25) and
/
5, < AnBalla-| +2(1+ V(lo-| + R)) 6.15)

ala+1)(E - R)?(1-7)e

Estimate (2.24) follows from (6.15), (2.13) and the limit y4(¢) — 0 as t — +oo.
Note that similarly to (6.6) one has for (g,7) € [0,1]?, e <nand 7 >0

2, ) 4 s +eya(m)] 2 e+ 7o —7(sup |2 (a,.) — al + Jage]) — 6
R

|z 2
> n——-r+7(—= —R). 6.16
Note also that under condition (2.16) we have
|v| , -]
max ( sup max(l,1—r+ (—— — R)s)|[y+(s)|,(—= — R') sup |y4|) < R.  (6.17)
( s€(0,+00) \/§ ﬂ (0,4-00) )
We now shorten z4(a,.) to z; for the rest of the paragraph. We also set e = 0 and

e+ = 1. We need the following Lemma.
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Lemma 6.1. Set

t+oo ptoo
v (t) == ya(t) — /t / (B(24(s) + 24) — B (24(5))) 24 (s)dsdr, (6.18)

fort € R. Then the following estimates are valid

nRA(1L+ ) (1 4+ PG - ny (14 V(e |+ ex))

. V2
()] < @+ DL = RY (1= r+ (B — m)p)e o1
for £t >0,
4nBR(L + ) (1 + TP W=IER)) oo mps(1 + Valz—)
. (%% =)
F- ()] < o > (6:20)
(oz—!—l)(f R’)( —r)otl
fort > 0.

Proof of Lemma 6.1. Note that

A_() = Ay_)(t) — A(0)(¢) — / (VV(2_(0) +2_) — VVi(z_(0)))do, for t €R. (6.21)

—00

The term A(y_)(t) — A(0)(t) is estimated by (5.11) for t < 0. We use the growth properties of
Viand V¢ (see (1.4) and (1.5)) and we use (4.16) (“f = 0") to estimate ffoo (VV(2_(s)+a_)—
VV!(z_(s)))ds, t < 0. Then we obtain (6.19) for v—. To prove (6.19) for v, we consider an
identity similar to (6.21), and we use (6.16), and we repeat the proof of (5.11) with appropriate
substitutions of “(z_, x_,y_)" by “(z4, x4, y+)", and we also estimate f:oo (VV (24 (s)+a4)—
VVi(z4(s)))ds, t > 0, by using (6.16) and the growth properties of V*, V! (we also use that
|bsc| < 1). For t > 0 we again use the identity (6.21), and we use the following estimate that
follows from (2.22), (2.14) and (2.16):

o™t sup | <

(0,400) (a+ 1)1 —r) (6.22)

Then we repeat the proof of (5.13) where we use the bound (6.22) on sup(g ;) [J-| in the

estimate similar to (5.12) with ' in place of F** and with “(f1, f2) = (y—,0)" (otherwise we
only use the bound ||y_|| < R). Thus we obtain (6.20). O

We prove (2.26). First note that from (2.17) it follows that

4
A=)"A, (6.23)
j=1
where we set .
Ay = —/_ (VV(2(7)) = VV (v 4+ 2_))dr, (6.24)

Ay = —/ / VV(z(o))dodr, (6.25)
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“+oo T
Ay im /_ /_ (B(x(1)(B(2(0))#(0)) — B(ro_ +z_)(B(ov— + z_)v_))dodr, (6.26)

Ay = /*OO (B(gj(T)) — B(z_ (1) +x_ (6.27)
/ /S1 )+x) - Bl( (52))) (52)d52d81))vfd7'.

We prove the estimates (6.28)—(6.32) given below that provide a bound for A;, i =1,...,4.
Then we collect those bounds and the bounds obtained for sup g | \7 l, sup(_ |v | and
SUP(_o0,0) [7-| (see Lemma 6.1), and we use the decomposition (6.23) and (2 13) and we
obtain (2.26).

We use the growth properties of V' (see (1.4) and (1.5)) and we use (4.15) and (4.16), and
we obtain

’A1| S n/BQ /+OO (|T|(Sup(0,+oo |y | + SUpPRr |Z* - |) + Sup(iooyo) |y7|)d7-
- TR s =Ry e
+nBs /+oo (|T|(Sup(0,+oo |y | + supg ‘Z, —v_ |) + SUP(_oo,0) |y7|)d7_
3 S (1+‘ff|_r+|7_|(|v_ R/))a+3
2nR’
< o n — - %+ BQ+%,|
(75 — BP0+ 5 -r) (a+1)(1+ 25 —r)
R 2>' (6.28)

(a+2)(1+%—r)

We use (1.4), (1.5) and (4.16), and we obtain

8l < b ([ supBiute(rlar) ([ supl 57 (ol0))ldo)

j.k
< 4n? (@ N B2 2 (6.29)
(il —rppa 4+l — et (a4 B
We use the identity
B(z(7))(B(x(0))&(c)) — B(tv— + x_)(B(ov— + z_)v_) (6.30)
= (B(z(7)) — B(to- + 2))(B(x(0))#(0))
+B(rv- +2-)(B(x(0)) - Blov- +z-))i(0))
+B(tv_ +x_)B(ov_ +z_)(i(0) — v_) for (o,7) € R?,

and we use, in particular, the growth properties of B ((1.4), (1.5)) and (4.15) and (4.16), and
we obtain

Ay < 83 R/(lv_| + R') b, Ba + B3 Bs )
T B —rparElorete e+ Bl ) (a4 20+ B -2
l / l

X(& n 182 ) 4n2R ,61 + /82 )2. (631)

+
o« (atn+ I -nT (R e e (e )
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First, under condition (2.16), the function

/ / o) — Blz_(s2))) 2 (s2)dsads1,

7 € R, belongs to Mp,. Then we use the growth properties of B, (4.15) and (4.16), and we
obtain

N ‘/Sup (—00,0) [7=| + [T|sUP (0 4 o0) [7-]
- r 4 2= \Jr(\’l\)f\ R!)|7|)e+2
X | \63\ + e)dr
1—r+ 4 (2 — R
< 2n|v_| (Sup(—ooo ) - \( B33 L P )
- rya—r+ Ehed 1 or B Yo b o)1 - r 4 ) atd
SUP(0,4-00) | 7| Jo 1))
P (e +2)). (6.32)
Vol (a+ 1)1 -r+-7)

It remains to prove (2.27). From (2.11), (2.12), and (2.2) at t = 0 (A(y—) = y—) it follows
by straightforward computations that

bee = y_(0) — o (0) = W' +/_(; /_; Fo(o + o )(r)drdo
_/Om /(;ooFS(.v_—i—x_)(T)deU—i-/_Ooo /_; BS(TU_—1—36_)/_;3(311)_—i—m_)v_dsldea

+o0 +o0 T
—/ B (rv_ + x_)(/ B(siv_ + x_)v_dsl>d7'da
0 o

—00

+Whs Z Q-0 (6.33)

where we set

0 o
/ / (VVl(x(T)) — VVl(sz(T) + x;))dea, (6.34)
Foo JFo0
0 o
Qo= — . LOO (VV3(z(r)) = VV*(Tv_ + 2_))drdo, (6.35)
0 o T
O i=— [ L B (a(7) /_ YV (2(s1))dsydrdo, (6.36)
0 o T
Oy 1= A A | @B (6.37)

—B*(tv— + z_)(B(s1v— + z_)v_))dsidrdo,
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Qs s _/0 /; (BS(:C( )~ B (= (r) + 2 (6.38)
/ /Sl +a_) — B (2_(s2))) 2= (SQ)dSQdSl))U_deO',
Qg im / ' / 0 (B'(a(r) - B'(z5(r) + 25 (6.39)

+Lm/ B(zx(s2) + z5) — BZ(Z:F(SQ)))é:F(SQ)dSQd31))Z.I:F(T)deO',

Q7= / L " ((B'a(m) - Bl (r) + a2))iz(r) + Bz (r) + a5 )i (7)) drdo. (6.40)

Foo
We prove the estimates (6.41)—(6.49) given below that give a bound for Q4 ;, j =1...7. Then
we collect those bounds and the bounds obtained for sup (g ;oc) |- |; SUP4se(0,400) [ (8)] and
SUD4 se(0,400) |7£(8)| (see Lemma 6.1), and we use the decomposition (6.33), and we obtain
(2.27) (we also use the estimate (2.13)). From the growth properties of V*, V!, B* B! (1.4)
and (1.5), and from (4.15), (4.16) and (6.16), it follows that

152 SUPe (0,4 00) 1Y (F5)] < npaR

ala+1)(\F = R =r)> "~ afa+ (I = R)*(1 =)

Q1 , (6.41)

nfAs su _
Q52| < 53@ ‘p —) ) lv-| T (6.42)
(a+1)(a+2)(\f R)2(1 r+ff)
/ r nB5I7|(supg |- — v_| +5Up(o 100y [§|)drdo

(1—r+ 2=l (2l Rryjrpyets

vz T\
=< il i ( ! + l)
T e+ - rpa-r+ BheMar ) -r+ ) @
Qrs] < £:F+1n262/ / drdo (6.43)
(1—r+ |z_ I_‘_(Ivfl R!)|7|)e+2

X/ ( + b2 )dT
oo (1_,_%4_(\0\}\ Ro)lr)e+t (1 + |Tf| +(|i7| Ro)|r|)+2

(5 + )n2fs &+ Bs )
oo+ 1)1 — RYH(1—r+ Il a (g 1+ )

<

(e5 + 1)n2 (Jv_| + R) R max(Bs, B5)
oo+ 1)(IF = R)H(1—r+ R
_l’_ —
X<(61 (a+1)(1—7’+|f/§))(0‘ (a+2)(1—7’+%)
! s s
¥y Bt A EN & o] 2)’
o (a+1)(1—r+ﬁ) (a+2)(1—r+ﬁ)

|92 4]

(6.44)

)

(6.45)
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3
n2 B5v—| sup(_ oo 0y [7-|

Q5] < P - E T (6.46)
(Oé+1)(0&+2)(\[ R)( T‘+W)a
3 .
n2pB5lv_| SUD( 00,0 [7-| SUD(0,400) 17—
Q5] < TR EHI = ) (6.47)
(a+1)(\f R')? (1—T‘+W) (a+2)(1+ﬁ—r) a(\f R')
3
n2By([v-| + R') supe (0,1 o0) [7£(F5)]
Q] < Vi ;ﬁ“ = (6.48)
ala+1)(Z — R)*(1—7)
3 v_ .
12 o 4 $UDse (0,400 (L= 7 4 (155 = R)ls)A(F5)])
Q7] < — Ta— . (6.49)
a(a—l—l)(\f RN2(1 —r)e

For the bound for Q4 in (6.48), we also used under condition (2.16) that the function
) = fT+°° :1'00 (B(z+(s2) + 24) — B'(24(52))) 24 (s2)dsads1, T € (0,+00), satisfies the
same estimates as y4 does in (6.17). O

Proof of Theorem 1.1. Note that for the vector valued function W = (Wy,..., W,,) defined
by (2.18) we have

oW (b, ) =

gek/;m /01 <ij,k(gz_(p9,%)+(1_E)Tngm
+% /_oo /_; (B(z—(pe, %) + ) — BY(z_(p9, ;)))Z—(p:’ﬁdsdg}

pla=(pf, ) = 70) +

/_; /_; (B(z_(PH,g) + ) _Bl(z_(p97§>)) é‘(’j.f’pdsdg>d€d77 (6.50)

for (0,2) € TS" ! and p € (0,400) and j = 1...n. Then the asymptotics (1.17) follows from
(6.50), Lemma 4.1 and (2.26).

Note that for the vector valued function Whs = (Wh* ... W}*) defined by (2.20), we
have

W (b, ) Zek/ / </ VB3, (ez-(pb, ) (1—e)rb+a

S S *( 0>*)
tep! / B0, )~ B0, §>>)pppd32dsl)de,

T T 51 S s Z_ 9, 52
p(z—(p, ;) —70) + /_OO /_Oo (B(z—(pb, ;2) +2) — B (2_(p#, ;)))(ppp)dszdsl>d7da
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0 o 2 k(o : .
+ 1/OO/OO "</VB )+ (6.51)
—|—€p_1/_ /_ B?(z_( 0,—)4—3:) ~(ob, 2)d32d31
4! /; /; (B'(z—(p0, 22) + z) — B'(=_ (9, 82)))2_(pz’8’12)d82d51)de,

T Z_(pf, %2
/ / B?(z_(pb, 5—2) + $)Md82d51>d7'd0'
—o00 J—0o0 P P

0 o T Z Q,Sil
+/ / Bl(z(p0,2)+x)/ B?(z_(p 9,?)+az)<l0p’))d51d7'da

+oo ptoo M -
/ / Z&k/ VB]k ez_(pb, ) (1—e)r0+x
o 5 (ph, 2
+ep~ / / ) +x) — BY(z_(p#, f))) (ppp)ClSstl)dé‘,
p(z_(pH, -) - 70)
/ / ) +z) — BY(z_(pf sj)))wd@dsl)>d7’da
T p P

/m/gwm o) D [ (9B ontalp0.0. ) 60

[e'S) [e%9) i (a 9’1‘ ’372
+ep” /+ /+ B (2 (al(p,), )+b(p9 2 (pp ) 2) dondsn

+o00 .
+p—1/ / a(pl, ), P ) + b(ph, z)) — B (24 (a(ph, z), —;)))

Zy(a p9 ), %2

P dSQdSl)

00 00 0’ ,
/+ /+ *(z4(a(pb, x), )—l—b(p9 1‘)) brla (Pp N £ )d82d81>d6d7'd0'

—+o0 —+o0 ; T
+f Bz (alpf ), D) + )
0 o

+o0 2y (a(ph, x), 1
([ B ertaton.o. )+ bion x»*((p)p)dn) drdo,
for (§,2) € TS* ! and p € (0,4+00) and j = 1...n. Then the asymptotics (1.18) follows from
(6.51), Lemma 4.1 and (2.27). O
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