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Abstract Algorithms for reconstructing a two-dimensional symmetric 2-tensor field from the known
longitudinal or transverse ray transforms of its moments are proposed and justified. The algorithms are
based on the method of singular value decomposition. We use the known singular value decompositions
of the Radon transform of functions and the ray transforms of 2-tensor fields. Numerical simulations
demonstrate reliable results of reconstructing symmetric 2-tensor fields from values of the momentum
ray transforms.
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Introduction

In recent years, quite a lot of articles are devoted to the momentum ray transforms of tensor
fields (see, for example, [1]–[4]). Traditional questions of reconstruction ofm-tensor fields were
studied in these articles. In particular, stability estimates were received, images of momentum
ray transforms were described, uniqueness theorems were proven. Note that the longitudinal
ray transforms of moments were used as data in almost all works. There are significantly less
articles in which formulas and inversion procedures, constructive methods and algorithms of
solving reconstruction problems of tensor fields by momentum ray transforms were suggested.
The articles [1],[5] contain algorithms for reconstruction of a symmetric m-tensor filed in
Rn by its known longitudinal ray transforms with the weight tk, k = 0, . . . ,m. Relatively
simple reconstruction algorithms were earlier suggested in a special case at n = 2: recovery
of vector fields by the longitudinal ray transforms of moments [3]; reconstructing vector and
symmetric 2-tensor fields by the longitudinal and transverse ray transforms of moments [6].
We highlight the article [7], in which numerical simulations on reconstruction of a vector field
by the momentum ray transforms were included.

Development of numerical methods and algorithms for reconstruction of a two-dimensional
symmetric 2-tensor field by the momentum ray transforms is goal of the current article.
Furthermore, we carry out comparative research of three algorithms using the computational
experiment method.

The singular value decomposition (SV-decomposition) method is frequently used for in-
verting operators. In the SV-decomposition method an operator A is represented as

Af =
∞∑
k=1

σk⟨f, fk⟩Hgk,

where (fk), (gk) are orthonormal systems in the Hilbert spaces H and K, respectively, and
the numbers σk > 0 are called singular values of the operator A (see, for example, [8]). If the
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operator A has a singular value decomposition, its (pseudo)inverse operator is given by

A†g =
∞∑
k=1

σ−1
k ⟨g, gk⟩Kfk.

The operator A† is unbounded if and only if σkj → 0 for some sequence kj → ∞. Then the
operator A† can be regularized using the truncated singular value decomposition

A†
Ng =

∑
k⩽N

σ−1
k ⟨g, gk⟩Kfk.

Construction of SV-decompositions is one of classical questions in the frameworks of
investigation of tomographic operators properties. We mention some articles. The SV-
decompositions were constructed for the Radon transform operator [9]-[12] and for the ray
transform operator [13] of functions. Later the SV-decompositions were constructed for the
ray transforms operators (longitudinal, transverse and mixed) of two-dimensional vector [14],
symmetric 2-tensor [15] and symmetric m-tensor fields [16]. In [17] an SV-decomposition for
the operator of longitudinal ray transform of fan type acting on two-dimensional solenoidal
tensor fields of arbitrary degree m was constructed. In [14],[18] algorithms based on the
truncated SV-decomposition method were developed and numerically implemented for an
approximate recovery of two-dimensional vector and symmetric 2-tensor fields.

The present article is organized as follows. We remind definitions of well known spaces and
operators in Section 1 below. In Section 2, we establish connections between the operators
of momentum ray transforms of 2-tensor fields and obtain some properties of these operators
as a consequence. Further, in Section 3, we formulate the problem statements. Section 4
is devoted to justification and description of algorithms for solving formulated problems. In
Sections 5 and 6, we give details of numerical realization of the algorithms and describe
simulation results.

1 Mathematical basis
Let x = (x1, x2), B = {x ∈ R2

∣∣ |x| = √
x21 + x22 < 1} be a unit disk with the boundary

∂B = {x ∈ R2
∣∣ |x| = 1} and Z = {(s, ξ)

∣∣ ξ ∈ R2, |ξ| = 1, s ∈ R} be a cylinder.
The functional space L2(B) consists of functions, which are square integrable in B. A set
of symmetric m-tensor fields v(x) = (vi1...im(x)), where i1, . . . , im = 1, 2, defined in B is
denoted by Sm(B). In this article, we deal only with m = 0 (functions), m = 1 (vector fields)
and m = 2 (symmetric 2-tensor fields). We need the space of square integrable symmetric
m-tensor fields L2(S

m(B)). The Sobolev spaces are denoted by Hk(Sm(B)) and Hk
0 (S

m(B)).
We also use functions in the weight space L2(Z, ρ), ρ > 0.

Let us fix restrictions and conventions that are accepted in the tensor tomography model
used in this work. Sources of a physical field (the radiation) and their receivers are concen-
trated on the unit circle ∂B. Support of a symmetric m-tensor field w is separated from the
observation system, suppw ⊂ B. Outside the support, including on the set R2 \B, the field
w vanishes. The listed conditions seem natural, when organizing a data collection within the
framework of transmission tomography, and limitations arising from physical considerations
and the nature of the objects being studied.

The operators of inner derivation d and inner ⊥-derivation d⊥ are compositions of the
operators of covariant derivation ∇, covariant ⊥-derivation ∇⊥ and symmetrization σ, re-
spectively,

d, d⊥ : Hk(Sm(B)) → Hk−1(Sm+1(B))
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and act on a function f and a vector field v according to the formulas

(df)i = (∇f)i =
∂f

∂xi
, (d⊥f)i = (∇⊥f)i = (−1)i

∂f

∂x3−i
,

(dv)ij = (σ∇v)ij=
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
, (d⊥v)ij=(σ∇⊥v)ij=

1

2

(
(−1)j

∂vi
∂x3−j

+(−1)i
∂vj
∂x3−i

)
.

By direct verification it is established that

∇2φ = d2φ, (∇⊥)2φ = (d⊥)2φ, dd⊥φ = d⊥dφ, φ ∈ H2(B).

However, in the general case we have

∇∇⊥φ ̸= ∇⊥∇φ, ∇∇⊥φ ̸= dd⊥φ, ∇⊥∇φ ̸= dd⊥φ, φ ∈ H2(B). (1)

The divergence operator δ : Hk(Sm(B)) → Hk−1(Sm−1(B)) acts on a vector field v and
on a symmetric 2-tensor field w according to the formulas

δ v =
2∑

i=1

∂vi
∂xi

, (δw)j =
2∑

i=1

∂wji

∂xi
.

Recall that a symmetric m-tensor field w ∈ Hk(Sm(B)) is called potential if there is a
tensor field v ∈ Hk+1(Sm−1(B)) such that w = dv. A tensor field w ∈ Hk(Sm(B)) is called
solenoidal if δw = 0 ∈ Hk−1(Sm−1(B)). In particular, a symmetric 2-tensor field is solenoidal
if and only if there exists a function ψ such that w = (d⊥)2ψ (see, for example, [19]).

It is well known [20],[21] that there is a unique decomposition of an arbitrary symmetric
m-tensor field w to the following sum of potential and solenoidal parts

w = sw + dv, δ sw = 0, v ∈ H1
0 (S

m−1(B)).

There exists a more detailed decomposition [19],[22] of a symmetric 2-tensor field w to a sum
of the three terms

w = d2φ+ dd⊥χ+ (d⊥)2ψ, (2)

where
φ, χ, ψ ∈ H2(B), φ

∣∣
∂B

= 0, (dφ+ d⊥χ)
∣∣
∂B

= 0.

Unit vectors ξ = (cos θ, sin θ), η = ξ⊥ = (− sin θ, cos θ), θ ∈ [0, 2π) and a number s ∈ R
define a line Lξ,s = {x ∈ R2 : x = sξ + tη, t ∈ R}.

The Radon transform R : Hk(B) → Hk(Z, ρ) integrates a function f ∈ Hk(B) along the
lines Lξ,s for all s, ξ:

(Rf)(s, ξ) = (Rf)(s, θ) =
∞∫

−∞

f(sξ + tη)dt.

Here ρ(s) = (1 − s2)−1/2, |s| < 1 is the weight function we use for realization of numerical
algorithms using the SV-decomposition method.

In this work, we consider one of the variants of integral operators generated by the Radon
transform. Namely, momentum ray transforms of tensor fields

(P(j)
kmw)(s, θ) =

∞∫
−∞

tk
2∑

i1,..,im=1

wi1...im(sξ + tη)ξi1 . . . ξijηij+1 . . . ηimdt. (3)
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Here the index m determines the degree of the tensor field w, k ⩾ 0 is the order of the
moments, the index (j), 0 ⩽ j ⩽ m is responsible for components number of the normal
vector ξ. If j = m = 0 we obtain the Radon transform P(0)

k0 with the weight tk, which for
k = 0 coincides with the Radon transform: P(0)

00 f = Rf . Recall that for j = 0 the ray
transforms are called longitudinal, for j = m, m ⩾ 1 are transverse (or transversal), and for
0 < j < m, m ⩾ 2 are mixed.

2 Momentum ray transforms of symmetric 2-tensor fields

We are interested in the case m = 2 and connections with the case m = 0. From the operators
definition (3) follows connections between the momentum ray transforms of symmetric 2-
tensor fields and the momentum Radon transform of functions

P(0)
k2 w =

2∑
i,j=1

ηiηj(P(0)
k0 wij), P(1)

k2 w =

2∑
i,j=1

ηiξj(P(0)
k0 wij), P(2)

k2 w =

2∑
i,j=1

ξiξj(P(0)
k0 wij).

For any k, solving this system with respect to P(0)
k0 wij , i, j = 1, 2, we obtain the equalities

P(0)
k0 wij = ηiηj(P(0)

k2 w) + (ηjξi + ηiξj)(P(1)
k2 w) + ξiξj(P(2)

k2 w), i, j = 1, 2. (4)

Let us establish the connection between the longitudinal, mixed and transverse ray trans-
forms of the moment k.

Theorem 2.1. For an arbitrary k ⩾ 0 and a function φ ∈ H2(B) there are the following
connections between values of the transverse, mixed and longitudinal ray transforms of the
moment k:

P(0)
k2 d

2φ = P(2)
k2 (d

⊥)2φ, P(1)
k2 d

2φ = −P(2)
k2 dd

⊥φ,

P(0)
k2 dd

⊥φ = −P(2)
k2 dd

⊥φ, P(1)
k2 dd

⊥φ =
1

2

(
P(2)
k2 d

2φ− P(2)
k2 (d

⊥)2φ
)
,

P(0)
k2 (d

⊥)2φ = P(2)
k2 d

2φ, P(1)
k2 (d

⊥)2φ = P(2)
k2 dd

⊥φ.

Proof. We need the following equalities, which can be established by a direct verification:

⟨∇⊥ϕ, ξ⟩ = −⟨∇ϕ, η⟩, (5)

⟨∇ϕ, ξ⟩ = ⟨∇⊥ϕ, η⟩. (6)

Using the operators definition (3) and applying the formula (5) twice, we get

P(0)
k2 d

2φ =

∞∫
−∞

tk⟨d2φ, η2⟩ dt =
∞∫

−∞

tk⟨∇⟨∇φ, η⟩, η⟩ dt (5)
= −

∞∫
−∞

tk⟨∇⟨∇⊥φ, ξ⟩, η⟩ dt

(5)
=

∞∫
−∞

tk⟨∇⊥⟨∇⊥φ, ξ⟩, ξ⟩ dt =
∞∫

−∞

tk⟨(d⊥)2φ, ξ2⟩ dt = P(2)
k2 (d

⊥)2φ.

Note that after the first application of the formula (5) the momentum mixed ray transform
P(1)
k2 arises. However, a direct verification establishes that P(1)

k2 is applied to the asymmetric
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field ∇∇⊥φ (see (1)). The formula for calculating values of P(0)
k2 (d

⊥)2φ is obtained in a similar
way by applying the formula (6) twice.

Applying the formulas (5), (6) and using the equality dd⊥φ = d⊥dφ, we obtain

P(0)
k2 dd

⊥φ =

∞∫
−∞

tk⟨dd⊥φ, η2⟩ dt =
∞∫

−∞

tk⟨∇⟨∇⊥φ, η⟩, η⟩ dt (6)
=

∞∫
−∞

tk⟨∇⟨∇φ, ξ⟩, η⟩ dt

(5)
= −

∞∫
−∞

tk⟨∇⊥⟨∇φ, ξ⟩, ξ⟩ dt = −
∞∫

−∞

tk⟨d⊥dφ, ξ2⟩ dt = −P(2)
k2 dd

⊥φ.

We note that after application of the formula (6) the momentum mixed ray transform P(1)
k2 d

2φ

arises. Thus, it is additionally established that P(1)
k2 d

2φ = −P(2)
k2 dd

⊥φ. In a similar way we
obtain the equality P(1)

k2 (d
⊥)2φ = P(2)

k2 dd
⊥φ. To do this, it is enough in the reasoning to

change the order of application of the formulas (5) and (6).
Finally, we obtain an expression for P(1)

k2 dd
⊥φ. We have

P(1)
k2 dd

⊥φ =

∞∫
−∞

tk⟨⟨dd⊥φ, ξ⟩, η⟩ dt

=

∞∫
−∞

tk
(
− ∂2φ

∂x∂y
ξ1η1 +

1

2

(
∂2φ

∂x2
− ∂2φ

∂y2

)(
ξ1η2 + ξ2η1

)
+

∂2φ

∂x∂y
ξ2η2

)
dt

=

∞∫
−∞

tk
(
∂2φ

∂x∂y
ξ1ξ2 +

1

2

(
∂2φ

∂x2
− ∂2φ

∂y2

)(
ξ1ξ1 − ξ2ξ2

)
+

∂2φ

∂x∂y
ξ2ξ1

)
dt

=
1

2

∞∫
−∞

tk
((

∂2φ

∂x2
− ∂2φ

∂2y

)
ξ1ξ1 + 4

∂2φ

∂x∂y
ξ1ξ2 +

(
∂2φ

∂y2
− ∂2φ

∂x2

)
ξ2ξ2

)
dt

=
1

2

(
P(2)
k2 d

2φ− P(2)
k2 (d

⊥)2φ
)
.

From Th. 2.1 it follows that it is sufficient to study, for example, only the transverse ray
transforms of moments. Values of the longitudinal and mixed ray transforms of moments of
symmetric 2-tensor fields can be found using Th. 2.1.

Let us note one more consequence. For any k we have
P(1)
k2 (d

2φ+ (d⊥)2φ) = 0. (7)
Relations for the transverse ray transforms of moments, which are necessary for construct-

ing numerical algorithms, are collected in the following statement (see [22],[6] for details).

Proposition 2.1. Let d2φ, dd⊥χ, (d⊥)2ψ be symmetric 2-tensor fields with potentials φ, χ, ψ ∈
H2

0 (R2), then for the momentum transverse ray transforms P(2)
k2 , k = 0, 1, 2 the following

equalities
P(2)
02 d2φ = (Rφ)′′ss, P(2)

02 dd⊥χ = 0, P(2)
02 (d⊥)2ψ = 0,

P(2)
12 d2φ = −(Rφ)′′sθ, P(2)

12 dd⊥χ = (Rχ)′s, P(2)
12 (d⊥)2ψ = 0,

P(2)
22 d2φ = (Rφ)′′θθ − (sRφ)′s, P(2)

22 dd⊥χ = −2(Rχ)′θ, P(2)
22 (d⊥)2ψ = 2Rψ

hold.
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From Th. 2.1 and Pr. 2.1 the results for the operators of longitudinal and transverse ray
transforms of moments follow.

Corollary 2.1. Let d2φ, dd⊥χ, (d⊥)2ψ be symmetric 2-tensor fields with potentials φ, χ, ψ ∈
H2

0 (R2), then there are equalities for the momentum longitudinal ray transform P(0)
k2 , k =

0, 1, 2

P(0)
02 d2φ = 0, P(0)

02 dd⊥χ = 0, P(0)
02 (d⊥)2ψ = (Rψ)′′ss,

P(0)
12 d2φ = 0, P(0)

12 dd⊥χ = −(Rχ)′s, P(0)
12 (d⊥)2ψ = −(Rψ)′′sθ,

P(0)
22 d2φ = 2Rφ, P(0)

22 dd⊥χ = 2(Rχ)′θ, P(0)
22 (d⊥)2ψ = (Rψ)′′θθ − (sRψ)′s,

and for the mixed ray transform P(1)
k2 of the moments k = 0, 1, 2

P(1)
02 d2φ = 0, P(1)

02 dd⊥χ =
1

2
(Rχ)′′ss, P(1)

02 (d⊥)2ψ = 0,

P(1)
12 d2φ = −(Rφ)′s, P(1)

12 dd⊥χ = −1

2
(Rχ)′′sθ, P(1)

12 (d⊥)2ψ = (Rψ)′s,

P(1)
22 d2φ = 2(Rφ)′θ, P(1)

22 dd⊥χ =
1

2
((Rχ)′′θθ − (sRχ)′s − 2Rχ) , P(1)

22 (d⊥)2ψ = −2(Rψ)′θ.

3 Statement of problems

We are now in a position to state the inverse problems we seek to solve in this work.
Problem 1. Let for a symmetric 2-tensor field w values of the transverse ray transform

P(2)
k2 w of the moments k = 0, 1, 2 are given. We wish to recover w from this data.

Problem 2. Let values of the momentum longitudinal ray transforms P(0)
k2 w, k = 0, 1, 2

are given. It is necessary to reconstruct the symmetric 2-tensor field w.
Note that a problem of restoring a symmetric 2-tensor field w from values of the mixed

ray transforms P(1)
k2 w of moments k = 0, 1, 2 does not have a unique solution, since due to the

equalities (7) these operators do not distinguish the solenoidal part (d⊥)2φ and the potential
part d2φ of the field w. Therefore, this problem is not studied.

Additionally, the following problem is considered.
Problem 0. Let values of the longitudinal P(0)

02 w, mixed P(1)
02 w and transverse P(2)

02 w ray
transforms are given for a symmetric 2-tensor field w. We need to restore the field w.

Problem 0 is well studied (see, for example, [19],[22]). In particular, it is known that
from values of the longitudinal P(0)

02 w, mixed P(1)
02 w and transverse P(2)

02 w ray transforms the
solenoidal part (d⊥)2ψ, the potential parts dd⊥χ and d2φ of the field w can be restored,
respectively. Algorithms for solving Problem 0 based on the SV-decomposition method were
obtained in [14],[16].

4 Algorithms for solving the problems

The algorithms aimed at solving Pr. 1 and 2 are proposed in the current work. These algo-
rithms use initial data in the form of values of the ray transforms of the same type (transverse
or longitudinal) of the moments k = 0, 1, 2. This is a significant difference between Problem
0 and Problems 1 and 2. Consideration of Problem 0, while simultaneously solving Problem
1 or 2, aims to compare the results of restoration using the previously tested algorithms (for
Problem 0) and the algorithms proposed in the present work for restoring 2-tensor fields from
values of the momentum ray transforms (for Problems 1 and 2).
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The following theorem establishes connections between the ray transforms P(0)
k2 ,P

(2)
k2 of

the moments k = 0, 1, 2 and the ray transforms P(j)
02 , j = 0, 1, 2.

Theorem 4.1. Let w = d2φ + dd⊥χ + (d⊥)2ψ with potentials φ, χ, ψ ∈ H2
0 (R2) then there

are connections between the ray transforms P(j)
02 , j = 0, 1, 2 and the ray transforms P(0)

k2 of the
moments k = 0, 1, 2

P(2)
02 d2φ =

1

2

(
(P(0)

22 w)′′ss + 2(P(0)
12 w)′′sθ + (P(0)

02 w)′′θθ + 3P(0)
02 w + s (P(0)

02 w)′s
)
, (8)

P(1)
02 dd⊥χ = −1

2

(
(P(0)

12 w)′s + (P(0)
02 w)′θ

)
, (9)

P(0)
02 (d⊥)2ψ = P(0)

02 w (10)

and connections between the ray transforms P(j)
02 , j = 0, 1, 2 and P(2)

k2 , k = 0, 1, 2

P(2)
02 d2φ = P(2)

02 w, (11)

P(1)
02 dd⊥χ =

1

2

(
(P(2)

12 w)′s + (P(2)
02 w)′θ

)
, (12)

P(0)
02 (d⊥)2ψ =

1

2

(
(P(2)

22 w)′′ss + 2(P(2)
12 w)′′sθ + (P(2)

02 w)′′θθ + 3P(2)
02 w + s (P(2)

02 w)′s
)
. (13)

Proof. Let us obtain formulas (11)–(13) for the momentum transverse ray transforms.
Using Pr. 2.1 and the decomposition (2), we obtain:

P(2)
02 d2φ = (Rφ)′′ss = P(2)

02 w,

P(1)
02 dd⊥χ =

1

2
(Rχ)′′ss =

1

2
(P(2)

12 dd⊥χ)′s =
1

2

(
P(2)
12 (w − d2φ)

)′
s
=

1

2

(
P(2)
12 w − P(2)

12 d2φ
)′
s

=
1

2

(
(P(2)

12 w)′s + (Rφ)′′′ssθ
)
=

1

2

(
(P(2)

12 w)′s + (P(2)
02 w)′θ

)
,

P(0)
02 (d⊥)2ψ = (Rψ)′′ss =

1

2
(P(2)

22 (d⊥)2ψ)′′ss =
1

2

(
P(2)
22 (w − dd⊥χ− d2φ)

)′′
ss

=
1

2

(
P(2)
22 w − P(2)

22 dd⊥χ− P(2)
22 d2φ

)′′
ss

=
1

2

(
P(2)
22 w + 2(Rχ)′θ − (Rφ)′′θθ + (sRφ)′s

)′′
ss

=
1

2

(
(P(2)

22 w)′′ss + 2(Rχ)′′′ssθ − (Rφ)′′′′ssθθ + 3(Rφ)′′ss + s (Rφ)′′′sss
)

=
1

2

(
(P(2)

22 w)′′ss + 2
(
(P(2)

12 w)′s + (P(2)
02 w)′θ

)′
θ
− (P(2)

02 w)′′θθ + 3P(2)
02 w + s (P(2)

02 w)′s
)

=
1

2

(
(P(2)

22 w)′′ss + 2(P(2)
12 w)′′sθ + (P(2)

02 w)′′θθ + 3P(2)
02 w + s (P(2)

02 w)′s
)
.

The formulas (8)–(10) are obtained similarly.

The algorithms schemes aimed at both solving Problems 1 and 2 are completely similar
and differ only in the set of formulas used. Therefore, steps for solving Problems 0, 1 and 2
are given only for Algorithm 1. For Algorithms 2 and 3, the implementation stages of solution
only for Problem 1 are presented.

4.1 Algorithm 1

The algorithm allows to recover the components wij , i, j = 1, 2, of the symmetric 2-tensor
field w, using the SV-decomposition of the Radon transform R of functions.
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Problem 0. Let values of the ray transforms P(j)
02 w, j = 0, 1, 2 are given. To restore the

field w, one should perform the following steps:

1. using the formulas (4) with k = 0, calculate values of the expressions

ηiηj(P(0)
02 w) + (ηjξi + ηiξj)(P(1)

02 w) + ξiξj(P(2)
02 w), i, j = 1, 2,

which are equal to Rwij , i, j = 1, 2;
2. reconstruct the components wij , i, j = 1, 2 of the symmetric 2-tensor field w from values

of the expressions obtained in the first step.

Problem 1. Let values of the momentum transverse ray transforms P(2)
k2 w, k = 0, 1, 2 are

known. To recovery the symmetric 2-tensor field w it is necessary to perform the following
steps:

1. using the formulas (4) with k = 0 and the formulas (11)-(13), find values of the expres-
sions

ηiηj

2

(
(P(2)

22 w)′′ss + 2(P(2)
12 w)′′sθ + (P(2)

02 w)′′θθ + 3P(2)
02 w + s (P(2)

02 w)′s
)

+
(ηjξi + ηiξj)

2

(
(P(2)

12 w)′s + (P(2)
02 w)′θ

)
+ ξiξj(P(2)

02 w), i, j = 1, 2,

which are equal to Rwij , i, j = 1, 2 (the derivatives are calculated using difference
schemes);

2. reconstruct the components wij , i, j = 1, 2 of w.

Problem 2. Let values of the momentum longitudinal ray transforms P(0)
k2 w, k = 0, 1, 2

are given. To restore the field w, the following sequence of actions is implemented:

1. using the formulas (4) with k = 0 and the formulas (8)–(10), calculate the expressions

ηiηj(P(0)
02 w)− (ηjξi + ηiξj)

2

(
(P(0)

12 w)′s + (P(0)
02 w)′θ

)
+
ξiξj

2

(
(P(0)

22 w)′′ss + 2(P(0)
12 w)′′sθ + (P(0)

02 w)′′θθ + 3P(0)
02 w + s (P(0)

02 w)′s
)
, i, j = 1, 2,

where the derivatives are calculated using difference schemes;
2. reconstruct the components wij , i, j = 1, 2 of the tensor field w from values of the

expressions (as values of the Radon transform Rwij , i, j = 1, 2) obtained in the previous
step.

Note that when implementing Algorithm 1, the components wij , i, j = 1, 2 of the field w
are restored independently and therefore these calculations can be performed in parallel.

4.2 Algorithm 2

The algorithm allows to reconstruct the solenoidal part (d⊥)2ψ and the potential parts dd⊥χ
and d2φ of the field w separately. We use the previously constructed SV-decompositions of the
ray transforms P(j)

02 , j = 0, 1, 2 of symmetric 2-tensor fields. This algorithm is implemented
to solve Problems 0, 1 and 2, but we demonstrate the complete scheme for Problem 1 only.

Problem 1. Let values of the momentum transverse ray transforms P(2)
k2 w, k = 0, 1, 2 are

known. To recovery the symmetric 2-tensor field w it is necessary to perform the following
steps:
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1. construct an approximation d̃2φ of the potential part d2φ of the field w from P(2)
02 w;

2. construct an approximation d̃d⊥χ of the potential part dd⊥χ of w from values of the
expression

1

2

(
(P(2)

12 w)′s + (P(2)
02 w)′θ

)
,

that, according to the formula (12), is equal to P(1)
02 dd⊥χ (the derivatives are computed

numerically);

3. construct an approximation ˜(d⊥)2ψ of the solenoidal part (d⊥)2ψ of the tensor field w
from values of the expression

1

2

(
(P(2)

22 w)′′ss + 2(P(2)
12 w)′′sθ + (P(2)

02 w)′′θθ + 3P(2)
02 w + s (P(2)

02 w)′s
)
,

that, according to the formula (13), is equal to P(2)
02 d2φ (the derivatives are computed

numerically);
4. finally, summing up the results obtained, we get a complete reconstruction w̃ of the

field w.

Note that since the solenoidal part ˜(d⊥)2ψ and the potential parts d̃2φ, d̃d⊥χ of the field
w are reconstructed separately, these calculations can be performed in parallel.

4.3 Algorithm 3

Algorithm 3 is a modification of Algorithm 2. The modification consists in partially avoiding
numerical differentiation in the steps 2 and 3. In this case, the steps 1–3 must now be
carried out sequentially. This algorithm is implemented to solve Problems 1 and 2, but we
demonstrate the complete scheme for Prjblem 1 only.

Problem 1. Let values of the transverse ray transforms P(2)
k2 w of the moments k = 0, 1, 2

are given. To reconstruct the field w it is needed to perform the steps:

1. construct an approximation d̃2φ of the potential part d2φ of the tensor field w from
P(2)
02 w;

2. construct an approximation d̃d⊥χ of the potential part dd⊥χ of the field w from values
of the expression

1

2

(
(P(2)

12 w)′s + (P(2)
02 d̃2φ)′θ

)
,

that, according to the formula (12), is approximately equal to P(1)
02 dd⊥χ (here values

of (P(2)
12 w)′s are computed numerically, but values of (P(2)

02 d̃2φ)′θ are calculated analyti-
cally);

3. construct an approximation ˜(d⊥)2ψ of the solenoidal part (d⊥)2ψ of w from values of
the expression

1

2

(
(P(2)

22 w)′′ss + 4(P(1)
02 d̃d⊥χ)′θ − (P(2)

02 d̃2φ)′′θθ + 3P(2)
02 w + s (P(2)

02 d̃2φ)′s
)
,

that, in accordance with the intermediate result when obtaining the formula (13), is
approximately equal to P(2)

02 d2φ (values of (P(2)
22 w)′′ss are computed numerically, but

values of (P(1)
02 d̃d⊥χ)′θ, (P

(2)
02 d̃2φ)′′θθ and (P(2)

02 d̃2φ)′s are calculated analytically);
4. summing up the results obtained in the previous steps, we get a full reconstruction of

w.
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5 Details of numerical implementation
Using the SV-decompositions. The choice of the SV-decomposition method for solving
the formulated problems is determined by good accuracy of approximately reconstruction of
functions [14] and symmetric 2-tensor fields [16]. Moreover, the SV-decomposition method
allows to calculate values of the ray transforms of approximations of tensor fields analytically.

We use the Jacobi polynomials P (p,q)
n (t), the Gegenbauer polynomials C(µ)

n (t) and the
trigonometric functions Y 1

k (θ) = cos kθ, Y 2
k (θ) = sin kθ when constructing bases in the original

space and in the space of images. Below, we get the results for arbitrary m ⩾ 0, but we use
only m = 0 (Algorithm 1) and m = 2 (Algorithms 2 and 3) when carrying out simulations.

The SV-decompositions of the ray transforms operators P(j)
0m, 0 ⩽ j ⩽ m of symmetric

m-tensor fields have the form

g(s, θ) := (P(j)
0mu)(s, θ) =

2∑
i=1

∞∑
k=i−1

∞∑
n=0

σjmkn
〈
u,Fijm

kn

〉
L2(Sm(B))

Gim
kn(s, θ).

Values of (pseudo)inverse operators (P(j)
0m)†, 0 ⩽ j ⩽ m, acting on g may be calculated by

the following formulas

[(P(j)
0m)†g](x) =

2∑
i=1

∞∑
k=i−1

∞∑
n=0

(
σjmkn

)−1 〈
g,Gim

kn

〉
L2(Z,(1−s2)−1/2)

Fijm
kn (x). (14)

The fields Fijm
kn are defined

Fijm
kn (x) = dj

(
d⊥

)m−j
Φijm
kn (x), i = 1, 2, k ⩾ i− 1, n ⩾ 0, 0 ⩽ j ⩽ m, (15)

where the potentials in polar coordinate system are
Φijm
kn (r cosφ, r sinφ) = λjmkn

(
1− r2

)m
rkY i

k (φ)P
(k+1+m,k+1)
n (r2)

and the normalizing coefficients are defined by

λjmkn =

(
m

j

)1/2 bk(n+ k)!

2mk!(n+m)!

(
2n+ k + 1 +m

π

)1/2

, here bk =

{√
2, k ⩾ 1,

1, k = 0.

The functions Gim
kn , i = 1, 2, k ⩾ i− 1, n ⩾ 0, 0 ⩽ j ⩽ m are determined by the formulas

Gim
kn(s, θ) =

bk(−1)n+m

π
(1− s2)1/2C

(1)
2n+k+m(s)Y i

k (θ).

The singular values σjmkn are calculated by

σjmkn =

(
4π

2n+ k +m+ 1

)1/2(m
j

)−1/2

.

The operators (P(j)
m )† are unbounded because (σjmkn )

−1 → +∞ for n, k → ∞. These
operators can be regularized using the truncated SV-decomposition. Details can be found
in [14], [16], [18]. We use the basis fields (15) whose components have degree no more than
N = 50.

The following formulas are required for the realization of Algorithm 3:

(P(j)
02 F

ij2
kn )

′
θ(s, θ) =

kσj2knbk(−1)n+i

π
(1− s2)1/2C

(1)
2n+k+2(s)Y

3−i
k (θ),

(P(j)
02 F

ij2
kn )

′′
θθ(s, θ) =

k2σj2knbk(−1)n+1

π
(1− s2)1/2C

(1)
2n+k+2(s)Y

i
k (θ),

(P(j)
02 F

ij2
kn )

′
s(s, θ) =

σj2knbk(−1)n

π(1− s2)1/2

(
2(1− s2)C

(2)
2n+k+1(s)− sC

(1)
2n+k+2(s)

)
Y i
k (θ).
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Discretization of initial data. Values of the ray transforms P(2)
k2 (w), k = 0, 1, 2 (Prob-

lem 1), P(0)
k2 (w), k = 0, 1, 2 (Problem 2), or P(j)

02 (w), j = 0, 1, 2 (Problem 0), known at points
of an uniform grid are initial data in numerical simulations. Solving Problem 0, while si-
multaneously solving Problem 1 and 2, has a goal of comparison of calculation results using
the previously tested algorithm and the algorithms proposed for reconstruction symmetric
2-tensor fields by the momentum ray transforms. Fixing a natural L, we get the following
sequences

sp = p ·∆s, p = −L+ 1, . . . , L− 1, ∆s = 1/L,

θq = q ·∆θ, q = 0, 1, . . . , 2L− 1, ∆θ = π/L,

of discrete values of the variables s, θ. Choosing a pair sp, θq means setting vectors ξq =
(cos θq, sin θq), ηq = (− sin θq, cos θq) and a point

xpq =
(
cos θqsp + sin θq

√
1− s2p , sin θqsp − cos θq

√
1− s2p

)
∈ ∂B,

from which a ray propagate in the direction ηq. We use discretizations 200× 200, 300× 300
and 400× 400 by (s, θ).

Numerical integration. We use the trapezoidal rule for calculation values of the ray
transforms of test fields. This rule consists of integration along the straight line by the
formulas (3) for m = 2, j, k = 0, 1, 2. The SV-decomposition method leads to a polynomial
approximation of the (pseudo)inverse operators (14). We use the Simpson’s rule, consisting of
integration over the variables s, θ, when calculating the inner products

〈
g,Gim

kn

〉
L2(Z,(1−s2)−1/2)

.
Numerical differentiation. It is necessary to use the first and the second derivatives of

functions calculated in uniform grid when implementing Algorithms 1-3. In calculations we
use the five-point difference schemes

f ′(t0) ≈
f(t0 − 2h)− 8f(t0 − h) + 8f(t0 + h)− f(t0 + 2h)

12h
,

f ′′(t0) ≈
−f(t0 − 2h) + 16f(t0 − h)− 30f(t0) + 16f(t0 + h)− f(t0 + 2h)

12h2

with the high degree of accuracy O(h4).

6 Numerical simulations
We consider the symmetric 2-tensor fields

w(l) = (d⊥)2ψ(l) + dd⊥χ(l) + d2φ(l), l = 1, 2, 3,

generated by potentials of class C l+2, which are given by the formulas

ψ(l)(x) =

{
(0.36− x21 − (x2 + 0.2)2)l+2, if x21 + (x2 + 0.2)2 < 0.36,

0, otherwise,

χ(l)(x) =

{
(0.16− (x1 + 0.2)2 − x22)

l+2, if (x1 + 0.2)2 + x22 < 0.16,

0, otherwise,

φ(l)(x) =

{
(0.25− (x1 − 0.2)2 − x22)

l+2, if (x1 − 0.2)2 + x22 < 0.25,

0, otherwise.
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Figure 1: The dependence of the relative error of the field w(1) reconstruction (vertical
axis) on the discretization of initial data (horizontal axis).

We study the dependence of the relative error of reconstruction (in %) on the discretization of
initial data — values of the operators P(2)

k2 , k = 0, 1, 2 (Problem 1), P(0)
k2 , k = 0, 1, 2 (Problem

2) and P(j)
02 , j = 0, 1, 2 (Problem 0).

Test 1. The test results of the field w(1) reconstruction are presented in Figure 1. Figure
1 demonstrates the performance of all proposed algorithms when solving Problems 1 and 2.
However, the results of using Algorithms 1 and 2 are better than using Algorithm 3.

Figure 2 demonstrates the components of w(1) (line a), their best approximations when
solving Problem 0 using Algorithm 2 (line b) and when solving Problem 1 using Algorithms
2 (line c) and 3 (line d). The reconstruction results well present the behavior of w(1) within
its support. Outside the support of field, minor artifacts arise.

Test 2. The results of recovering the field w(2) using Algorithms 1 and 2 are close, so in
Table 1 we present only the results for Algorithm 2. If the optimal value of the degree N of
the basis polynomials in the SV-decomposition is less than 50, its value is given in brackets.
For example, the notation 1.61 (32) means that for a given discretization the smallest error
is 1.61%, and it is achieved at N = 32.

Table 1: Dependence of field reconstruction accuracy w(2) on discretization
Discretization by (s, θ) 200 × 200 300 × 300 400 × 400

Problem 0 Algorithm 2 0.36 0.36 0.36
Problem 1 Algorithm 2 0.39 0.36 0.36

Algorithm 3 1.61 (32) 1.69 (32) 1.05 (37)
Problem 2 Algorithm 2 0.53 (46) 0.37 0.36

Algorithm 3 2.41 (27) 2.72 (32) 1.57 (37)

Test 3. When solving all the problems of the field w(3) restoration, Algorithms 1 and 2
demonstrated a restoration error in the range of 0.08–0.1%. When implementing Algorithm
3 to solve Problem 1, with increasing discretization, the recovery error changes from 0.23%
to 0.19%. While when solving Problem 2 using Algorithm 3, the recovery error changes from
0.51% to 0.31%.

Conclusions. The results of numerical simulations demonstrate the performance of all
proposed algorithms when solving Problems 1 and 2. However, the results of using Algorithms
1 and 2 are better than using Algorithm 3. For comparison, the results of reconstruction of
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a)

b)

c)

d)

Figure 2: The components of field w(1) (line a), their best approximations when solving
Problem 0 using Algorithm 2 (line b) and when solving Problem 1 using Algorithms 2
(line c) and 3 (line d). The discretization of initial data is 400× 400.

the fields w(l), l = 1, 2, 3 from values of the ray transforms P(j)
02 , j = 0, 1, 2 (Problem 0)

are presented. It is evident that for the smoother fields w(l), l = 2, 3 Algorithms 1 and 2
demonstrate reliable accuracy of solving Problems 1 and 2. With large data discretization,
the accuracy coincides with the accuracy of solving Problem 0. This is probably due to a
smaller error in calculating the numerical derivatives for these fields.

Conclusion

The article is devoted to the justification, development and implementation of the algorithms
for restoring a symmetric 2-tensor field w from values of the ray transforms P(0)

k2 w or P(2)
k2 w

of its moments k = 0, 1, 2. It was demonstrated that a symmetric 2-tensor field is uniquely
reconstructed from the longitudinal or transverse ray transforms with the weight tk, k = 0, 1, 2.
The proposed algorithms for restoring a symmetric 2-tensor field are based on the properties
of the ray transforms P(0)

k2 w, P(2)
k2 w, k = 0, 1, 2 established in the current article. The main

numerical method is the SV-decompositions of the Radon transform R of functions and the ray
transforms P(j)

02 , j = 0, 1, 2 of 2-tensor fields. Numerical experiments were carried out aimed at
studying the influence on the accuracy of the symmetric 2-tensor field reconstruction of such
factors as discretization of the initial data and the smoothness of the field. Tests demonstrate
the advantage of Algorithms 1 and 2 over Algorithm 3. When discretizing data is 300× 300
or 400×400 for fields from C l, l ⩾ 2, Algorithms 1 and 2 demonstrate the accuracy of solving
Problems 1 and 2 coincides with the accuracy of solving Problem 0.
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