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Abstract School Bus Routing Problem aims to create an efficient routes and allocate serviceable
areas for student school buses. Buses pick up students from various locations based on their capacities
and closeness or distances. It is a typical clustering problem for different locations. However, the
choice of algorithm may vary depending on student locations and area shapes. This study focuses on to
compare and evaluate the performance of four well-known clustering methods like K-Means, DBSCAN,
Hierarchical Clustering and Gaussian Mixture Model on 500 randomly generated geographical points
within the boundaries of Izmir (Türkiye). The evaluation is conducted based on their density and
distribution characteristics. Silhouette Score, Davies-Bouldin Score metrics, and running time are
used to assess clustering quality. This analysis highlights the advantages and disadvantages of the
algorithms to provide insights into their applicability in different scenarios. Additionally, a visual
representation of clustering outcomes offers a deeper understanding of the spatial distribution of the
data.
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1 Introduction
People travel by private car or public transportation for both official and private purposes.
The growing population and the number of vehicles cause problems regarding the duration
and price of these trips. The increase in the time spent by vehicles in traffic not only causes
an increase in the price of transportation but also causes more toxic gas emissions; thus
environmental problems, more tension and stress; and thus personal health problems. If we
consider the existence of other social and sociological problems that can be added to these
problems, it can be understood that transportation problems are among the most important
problems of our day.

In this respect, scientists approach transportation problems from different perspectives
and seek various solutions. While some scientists are trying to develop vehicle systems that
minimize toxic gas emissions in terms of directly affecting environmental problems, some
scientists are working on models that will reduce the travel time of vehicles [1, 2, 3, 4].

In this study, we consider the classical School Bus Routing Problem (SBRP). The SBRP is
a real-life problem. The most important point to consider in real-life problems is the necessity
of taking into account all the situations affecting the problem. In our country - Türkiye, 40
out of every 100 students use school busses, highlighting the significant economic potential
of this sector. The SBRP is a significant and practical transportation challenge that affects
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countless families globally on a daily basis. School administrators and service providers must
design and implement a transportation system that ensures students are transported to and
from schools safely, reliably, and cost-effectively.

Classical SBRP was first published by Newton and Thomas in 1969 [5]. Since then, many
researchers have addressed the problem from different perspectives. There are also review
articles that include these studies [6, 7]. Some researchers have also examined the Vehicle
Routing Problem (VRP) in their review articles, and have considered SBRP as a sub-problem
and made various evaluations from this perspective [1]. SBRP aims to organize school busses
in the most efficient way. This problem basically seeks an answer to the question, "Which
student is assigned to which school bus and which routes do these service vehicles follow in
order to establish the most efficient system?". The SBRP has been studied in the literature
in different ways in terms of solution approaches. The SBRP problem actually includes two
basic optimization problems: Clustering and Routing. There are solution methods in the
literature that handle these two sub-problems independently or in a hybrid way.

In this study, clustering algorithms like K-Means, DBSCAN, Hierarchical and Gaussian
Mixture Model (GMM) were examined according to the density and distribution of 500 ran-
domly selected geographical points in Izmir region (Türkiye) and the advantages and disad-
vantages of the algorithms were revealed.

The subsequent sections are organized as follows. Sec. 2 presents the literature review
about SBRP, the algorithms which are used in this study is described in Sec. 3. The outcomes
derived from the computational experiments are reported in Sec 4. Discussion about the
advantages and disadvantages of the algorithms are outlined in Sec. 5. Finally, the conclusions
are presented in Sec. 6.

2 Literature Review
One of the earliest studies is published by Angel et al in 1972 . The study consist of the
algorithm about SBRP and it tries to reduce total distance which is taken by buses. The
study is investigated on 1500 students located on Indiana, USA [8].

The study which is published in 1997 by Braca et al showed that computerized approach
for the student transportation in the area of New York, USA. Also, student capacities, stations
and geographic informations are placed in the study [6].

One of the studies from the 2000s was published by Li and Fu in 2002. They showed a study
consisting of the transportation of 86 students who were located at 54 pick-up points points
in Hong Kong, China. Study, includes reducing the number of school buses and optimizing
travel time by short routes [9].

A precise branch and price framework for SBRP has been presented by Kinable et al.
(2014) with a strong emphasis on the efficiency problems naturally associated with column
generation (CG). The experiments were conducted on a set of 128 SBRP samples [10].

An effective routing algorithm for SBRP has been proposed by Kumar et al. (2015). The
branch and boundary algorithm provided the best solution for smaller problems, but for a
group of schools, it provided the optimal solution to help these schools optimize bus routes,
the number of buses used, and therefore the cost [11].

Bus stop selection for SBRP has been taken into consideration by Sarubbi et al. (2016)
in order to minimize the number of bus stops while ensuring that all students are assigned to
a bus stop within the home-bus stop walking distance restriction [12].

A school bus routing algorithm that is taking into consideration of safety of the students
and total amount of time the students stay on the bus is proposed. The proposed algo-
rithm provided a good solution. In addition, in this study a web based software system were
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developed to allow the real world application of the algorithm [13].
The SBRP for a single-school configuration, reflecting China’s school bus systems with

assumptions like a homogeneous bus fleet, home pick-ups, and fixed school times is considered.
It addresses the stochastic and time-varying nature of travel times, where path costs fluctuate
due to uncertainty. The optimal path selection in stochastic time-dependent (STD) networks
is treated as a sub-problem of the SBRP [14].

It is aimed to reduce the problems such as bus purchase cost, employment of drivers and
assistants, repair and fuel costs, which increase the global cost of SBRP, by reducing the
number of buses [15].

The SBRP with bus stop selection, tackling bus stop determination, student allocation,
and route computation to minimize routing costs while limiting student walking distances is
allocated. In this study, a fast and efficient mataheuristic that partially allocates students to
reachable stops and optimizes routing costs is developed [16] .

Some basic practical requirements such as multiple schools, mixed loads, heterogeneous
fleets, various pickup time windows and school bell constraints were taken into considera-
tion for SBRP. In addition, a time-discretized multi-commodity network flow model using a
student-loading state-oriented spacetime network has been proposed [17].

The SBRP in Holingol considers both school accessibility and scheme equity. Accessibility
is measured by the average student commuting time, while equity is assessed through the
average detour time of students [18].

The cumulative SBRP focuses on transporting students home from school by the same
buses. The goal is to select drop-off points within a certain walking distance and create routes
that minimize the total arrival time for all students. Six mixed integer linear programming
formulations based on the original and auxiliary graphs were proposed and compared nu-
merically using real examples. Computational experiments were conducted to evaluate the
performance of these models [19].

A Multi-Period School Bus Routing Problem was proposed, which aims to minimize the
total fleet distance by taking into account vehicle capacity and walking restrictions. A Mixed
Integer Linear Programming model and a metaheuristic algorithm combining Iterative Local
Search and Variable Neighborhood Descent have been introduced. In addition, new strategies
for student allocation have been presented. The study expanded the existing samples with
period-related requests, resulting in 448 new samples for evaluation. The algorithm efficiently
solves large samples with low computational effort [20].

There are different variations in the school routing problem. In this study, we consider a
single school bus that takes all students to a single school without a time window. The main
contribution of this study is to determine the effectiveness of each algorithm on the data, to
give the advantages and disadvantages of the algorithms, and to discuss which algorithm is
more suitable for practical use.

3 Methodology
Clustering is the process of grouping physical or abstract unlabeled objects into classes con-
sisting of similar objects. A cluster is a collection of data objects within the same cluster that
are similar to each other and different from objects in other clusters. Clustering has many
applications in summarization, learning, segmentation and target marketing. Clustering can
be thought of as a concise data model, which can be interpreted in the sense of a summary or a
generative model. The basic problem of clustering can be expressed as follows: Given a set of
data points, divide them into a set of groups that are as similar as possible. This definition is
a very rough definition, and differences in the problem definition can be significant depending
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on the specific model used [21, 22].
Clustering problems can be addressed using a wide variety of methods. The most common

methods are: Feature Selection Methods, Probabilistic and Generative Models, Distance-
Based Algorithms, Density and Grid-Based Methods, Leveraging Dimensionality Reduction
Methods, The High Dimensional Scenario and Scalable Techniques for Cluster Analysis.

The data type plays an important role in the selection of the clustering method. there
are different types of data available, such as Categorical Data, Text Data, Multimedia Data,
Time Series Data, Discrete Sequences, Network Data, Uncertain Data, etc.

Clustering analysis is the process of classifying objects into subsets in such a way that
they make sense in the context of a particular problem.

In the context of urban planning, clustering can be applied to identify high-density areas,
optimize resource allocation, and analyze patterns in spatial datasets. The Izmir region of
Türkiye, with its diverse geographical features and urban structure, provides an ideal setting
for this analysis. This study evaluates the clustering performance of K-Means, DBSCAN, Hi-
erarchical Clustering, and GMM algorithms on 500 random points within Izmir’s boundaries.
By using real-world spatial metrics and visualizing the clustering outcomes, the study aims
to uncover algorithmic strengths and limitations in handling geographical data.

3.1 K-Means Clustering Algorithm
The K-Means is one of the simple and well-known method for data clustering. It is widely
used in practical applications due to its simplicity.

The algorithm starts by selecting K points as the initial centroids. Then, each selected
point is assigned to the closest centroid according to a certain measure of proximity. After the
clusters are created, the centroids of each cluster are updated. The algorithm then iteratively
repeats these two steps until the center points do not change or another alternative relaxed
convergence criterion is met [23, 24, 25, 26].

Consider a set of observations (x1, x2, . . . , xn), where each observation is a d-dimensional
real vector. The objective of k-means clustering is to divide these n observations into k ≤ n
clusters S = {S1, S2, . . . , Sk}, in such a way that the within-cluster sum of squares (WCSS),
or variance, is minimized. The formal goal can be expressed as:

argmin
S

k∑
i=1

∑
x∈Si

∥x− µi∥
2 = argmin

S

k∑
i=1

|Si|Var(Si)

Here, µi denotes the mean (or centroid) of the points in Si, defined by:

µi =
1

|Si|
∑
x∈Si

x,

where |Si| is the number of elements in Si, and ∥·∥ represents the standard L2 norm. This
formulation is equivalent to minimizing the squared pairwise deviations of points within the
same cluster:

argmin
S

k∑
i=1

1

|Si|
∑

x,y∈Si

∥x− y∥2 .

This equivalence can be derived from the following identity:

|Si|
∑
x∈Si

∥x− µi∥
2 =

1

2

∑
x,y∈Si

∥x− y∥2 .

Since the total variance remains constant, the problem can be reinterpreted as maximizing
the between-cluster sum of squares (BCSS), which measures the squared differences between
points from different clusters. This relationship is closely tied to the law of total variance in
probability theory.

The steps of the K-Means algorithm are as follows:
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1. Initialization:

Select k initial centroids randomly from the datasetX. Let the centroids be µ1, µ2, . . . , µk.
2. Assignment Step:

For each data point xj ∈ X, assign it to the cluster whose centroid is the nearest:

S
(t)
i =

{
xp :

∥∥∥xp −m
(t)
i

∥∥∥2 ≤ ∥∥∥xp −m
(t)
j

∥∥∥2 , ∀j, 1 ≤ j ≤ k

}
,

where each xp is assigned to exactly one S(t), even if it could be assigned to two or more
of them.

3. Update Step:

After assigning all points to the nearest centroids, recalculate the centroids of the clus-
ters:

m
(t+1)
i =

1∣∣∣S(t)
i

∣∣∣
∑

xj∈S
(t)
i

xj

4. Repeat:

Repeat steps 2 and 3 until:

• The centroids do not change significantly (i.e., convergence is reached).
• OR the algorithm reaches the maximum number of iterations.

5. Output the Clusters:
Once the algorithm has converged, return the clusters S1, S2, . . . , Sk and their final
centroids µ1, µ2, . . . , µk.

The most critical challenge in clustering analysis is determining the appropriate number
of clusters. Despite numerous studies on this topic, there is no universally conclusive method
for addressing this issue. One of the earliest and most well-known approaches proposed to
tackle this problem is:

k =
√
n/2 (1)

In Eq. (1), k represents the number of clusters, and n denotes the number of data points.
This method is recommended for small sample studies, as it becomes challenging to achieve
accurate results in large sample studies [6]. Another well-known approach is:

M = k2 + |W | (2)

In Eq. (2), W represents the sum of squared distances within each cluster.

W =
k∑

j=1

nj∑
i=1

(
(xij − x′ij)(xij − x′ij)

T
)

(3)

In Eq. (3), nj represents the number of data points in the j-th cluster, k denotes the
number of clusters, xij is the i-th value in the j-th cluster, and x′ij is the average vector of
the j-th cluster.

A wide variety of proximity measurements can be used to calculate the closest centroid
within the K-Means algorithm. And this choice can significantly affect the centerpoint as-
signment and the quality of the solution. The measurements that can be used are Euclidean
distance, Manhattan distance and Cosine similarity. The Euclidean distance metric is the
most popular choice for K-means clustering, but the Haversine formula is used in geographic
clustering, logistics optimization, and school bus routing.

Haversine formula: The term “Haversine” comes from the mathematical function known
as the haversine.

Haversine(θ) = sin2 (θ/2) (4)
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Eq. (4) is adapted to incorporate latitude and longitude coordinates. The distance between
two points with latitude and longitude coordinates (φ1, ψ1) and (φ2, ψ2) can be calculated
using the Haversine formula:

d = 2r sin−1

√
sin2

φ2 − φ1

2
+ cos(φ1) cos(φ2) sin

2 ψ2 − ψ1

2
(5)

The variable d in a given Eq. (5), represents the distance between two points with latitude
and longitude coordinates (ψ,φ), and r denotes the Earth’s radius.

Haversine Formula is used to calculate distance between two points using latitude and
longitude. It is important for use in navigation. This formula is particularly significant in
navigation as it serves as the foundational equation for understanding distance calculations
on a sphere.

3.2 Density Based Spatial Clustering of Applications with Noise (DB-
SCAN)

Density-based spatial clustering is a widely used data clustering algorithm. The of Applica-
tions with Noise (DBSCAN) algorithm groups regions of similar density into the same cluster,
aiming to distinguish high-density clusters from low-density regions. It is particularly useful
for identifying clusters of arbitrary shape and handling noise within the data.

In this algorithm Eps-neighborhood, is a specified Radius, MinPts is a specified number
of points, Density is a number of points within a specified Radius

If a point has at least MinPts in the Eps neighborhood, this point is called a core point,
if it is less than MinPts in the Eps but around the core point, this point is called a boundary
point, if any point is not a core point or boundary point, this point is called a noise point
[23, 24, 25, 26].

The steps of the DBSCAN algorithm are as follows:
Step 1. Initialization: For each point in the dataset, DBSCAN checks its neighborhood

using the specified Eps (radius) value. The neighborhood of each point is calculated to
determine the density around that point.

Step 2. Classification of Points: If the neighborhood of a point contains more than or
equal to MinPts, the point is classified as a Core point, if a point is within the Eps-radius of
a core point but has fewer than MinPts in its own neighborhood, it is classified as a Border
point, if a point is neither a core point nor a border point, it is classified as a Noise point.

Step 3. Cluster Expansion: Starting with a core point, all other points within its Eps-
neighborhood are added to the cluster. If a border point is within the neighborhood of a core
point, it is added to the same cluster as the core point.

Step 4. Repeat for all Points: This process is repeated for all points in the dataset.
New clusters are formed by expanding from core points. Once all points are processed, the
algorithm finishes.

Step 5. Termination: The clustering process concludes when no new points can be added
to any cluster. Noise points are left unclassified and are excluded from the final clusters.

Unlike K-means or other clustering algorithms, DBSCAN does not require the user to
specify the number of clusters in advance. DBSCAN is effective in detecting noise points
that do not belong to any cluster, which can be excluded from further analysis. DBSCAN
is particularly useful for discovering clusters with irregular shapes, unlike algorithms like
K-means that assume spherical clusters.

The accuracy of DBSCAN depends heavily on the choice of Eps and MinPts values. If
these parameters are not chosen appropriately, the algorithm may fail to detect meaningful
clusters or may classify too many points as noise. DBSCAN can struggle when clusters have
significantly varying densities.
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3.3 Hierarchical Clustering
Hierarchical clustering is a method that calculates the distance between two clusters in a
dataset using specific linkage methods and combines them to form a cluster hierarchy [27,
4]. This approach builds a tree-like structure called a dendrogram, which illustrates the
hierarchical relationships between data points. Unlike some clustering methods, hierarchical
clustering does not require the number of clusters to be specified in advance [23, 24, 25, 26].

The steps of the hierarchical clustering are as follows:
Step 1. Initialization: Assign each item to its own cluster. For a dataset with N items,

there are initially N clusters, each containing one item. The distances (or similarities) between
clusters are set equal to the distances (or similarities) between the items they contain.

Step 2. Merge Closest Clusters: Identify the closest (most similar) pair of clusters based
on the chosen distance metric and linkage method. Merge them into a single cluster, reducing
the total number of clusters by one.

Step 3. Update Distance Matrix: Recalculate the distances (or similarities) between the
newly formed cluster and all remaining clusters. The calculation depends on the selected
linkage method.

Step 4. Repeat: Steps 2 and 3 are repeated iteratively until all data points are merged
into a single cluster of size N.

Step 5. Construct Dendrogram: The hierarchical structure is visualized using a dendro-
gram, where the height of each merge represents the distance or dissimilarity between the
merged clusters.

In hierarchical clustering, linkage methods determine how the distance between two clus-
ters is calculated during the merging process. The choice of linkage method influences the
shape and structure of the resulting clusters. The most commonly used linkage methods are:

Single Linkage: The distance between two clusters is defined as the shortest distance
between any two points, one from each cluster.

d(r, s) = min{d(xi, xj) | xi ∈ r, xj ∈ s}
where d(r, s) is the distance between clusters r and s, and xi,xj are data points in the respec-
tive clusters.

Complete Linkage: The distance between two clusters is defined as the longest distance
between any two points, one from each cluster.

d(r, s) = max{d(xi, xj) | xi ∈ r, xj ∈ s}
Average Linkage: The distance between two clusters is calculated as the average distance

between all pairs of points, one from each cluster.

d(r, s) =
1

|r| · |s|
∑
xi∈r

∑
xj∈s

d(xi, xj),

where |r| and |s| are the sizes of clusters r and s, respectively.
Ward’s Linkage: The distance between two clusters is based on the increase in the total

within-cluster variance after merging.

d(r, s) =
|r| · |s|
|r|+ |s|

∥cr − cs∥2

where cr and cs are the centroids of clusters r and s, respectively.

3.4 Gaussian Mixture Model
The Gaussian Mixture Model (GMM) is a powerful machine learning approach for modeling
the underlying distributions of data. GMM assumes that the data consists of multiple Gaus-
sian (Normal) distributions, each referred to as a component. The model probabilistically
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assigns observations to these components and attempts to uncover the overall data structure
by optimizing the parameters of each component [23, 24, 25, 26].

A GMM is a mixture of Gaussian distributions, where each distribution represents a
component. It consists of K components. An observation xi is expressed as follows:

P (xi) =

K∑
k=1

πkN(xi | µk,Σk)

where, πk - is the weight of the k-th component in the mixture (mixture weight
N(xi | µk,Σk) - The density function of the Gaussian distribution for the k-th component.
Parameters:
µk - Mean of the k th component.
Σk - covariance matrix of the k-th component.

3.4.1 Solution Process of GMM: Expectation-Maximisation Algorithm
The Expectation-Maximization (EM) algorithm is used to iteratively estimate the parameters
of GMM. Below are the steps:

Initialization.

• Randomly initialize the parameters: Mixture weights πk, means µk and covariance
matrices Σk

• Define the number of components K.
• Input the dataset {x1, x2, . . . , xn}

1. Iterative Steps

Step 1. Expectation Step (E-Step)

Compute the posterior probability (responsibility) that each data point xi belongs to
each component k:

γik =
πkN(xi | µk,Σk)∑K
j=1 πjN(xi | µj ,Σj)

where: γik: The probability that xi belongs to the k-th component.

πk: The mixture weight of the k-th component.

N(xi | µk,Σk): The Gaussian density function for the k-th component.

Step 2: Maximization Step (M-Step)

Update the model parameters using the computed responsibilities γik:

Mixture weights πk:
πk =

1

N

N∑
i=1

γik

Means µk:
µk =

N∑
i=1

γikxi

/ N∑
i=1

γik

Covariance matrices Σk:

Σk =
N∑
i=1

γik(xi − µk)(xi − µk)
T
/ N∑

i=1

γik

Step 3: Convergence Check

Log-Likelihood Calculation: Compute the log-likelihood of the data given the pa-
rameters:
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L =
N∑
i=1

log

(
K∑
k=1

πkN(xi | µk,Σk)

)

Stopping Criterion: If the change in log-likelihood is smaller than a predefined thresh-
old ϵ, stop the iteration. Otherwise, repeat the E-Step and M-Step.

After convergence, the algorithm outputs the optimized parameters pik, µk, Σk, prob-
abilities γik for assigning data points to components, cluster assignments based on the
highest probability component for each data point.

4 Computational Experiments
In this section, we will explain in more detail the data provided by the methods and the cal-
culation results. In our study, in the K-Means algorithm, the data was divided into k clusters
using the Haversine distance metric for geographic data. In the DBSCAN algorithm, density-
based clustering was performed with the neighborhood radius (epsilon) and MinPts (minimum
number of neighbors) parameters. In the Hierarchical Clustering method, the distances be-
tween clusters were calculated with the average linking method and distance measurements
were made using the Haversine distance metric. Finally, in the Gaussian Mixture Model
(GMM), the data were modeled with Gaussian distributions with the cluster number and full
covariance type parameters.

4.1 Data preparation
We tested the problem on randomly generated sample data and determined within the borders
of Izmir (Türkiye) province for geographical analysis. For this purpose, 500 points were
determined and latitude and longitude information were used as coordinates when determining
the points. These points were generated using a random sampling method to ensure uniform
distribution across the city’s urban and suburban regions.

Preprocessing steps included normalization and distance metric. In normalization process,
latitude and longitude values were normalized to standardize the scale for clustering algorithms
and in distace metric process the Haversine formula was used to calculate the great-circle
distance between points, which is essential for spatial clustering in spherical coordinates.

Four clustering algorithms, K-Means, DBSCAN, Hierarchical Clustering, and GMM algo-
rithms were selected based on their popularity and applicability to spatial data.

4.2 Performance Metrics
To evaluate and compare the clustering outcomes, the following metrics were used:

Silhouette Score: Measures the quality of clustering by evaluating cohesion within clus-
ters and separation between clusters. The silhouette ranges from -1 to +1, with higher scores
indicating better-defined clusters.

Davies-Bouldin Score: The Davies-Bouldin score is a metric used to evaluate clustering
algorithms. Quantifies cluster quality based on intra-cluster and inter-cluster distances. It is
an internal evaluation scheme where how well the clustering is done is verified using quantities
and properties specific to the dataset. Lower scores indicate more distinct and compact
clusters.

Running Time: Running time is the length of time required to perform a computational
process.

Visual Analysis: Map-based visualizations were created to assess the spatial coherence
of clusters and their alignment with geographic regions.
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4.3 Clustering Results
The performance of the algorithms is summarized in Tab. 1. These computational experiments
were performed on the specified computer, which features an Intel(R) Core(TM) i7-8665U
CPU (1.90 GHz-2.11 GHz), 32GB of RAM, and a 512GB SSD.

Table 1: Performance Comparison of Clustering Algorithms
Algorithm Silhouette Davies-Bouldin Running

Score Score Time (s)
K-Means 0.32 0.93 5.66
DBSCAN 0.14 5.43 2.79
Hierarchical 0.27 1.045 2.82
Gaussian Mixture 0.299 0.983 0.70

The epsilon value for DBSCAN was set to 3, determined using a k-NN graph. During the
computation trials, the max_clusters parameter for Hierarchical Clustering was set to 5.

Figure 1: k-nearest neighbor distances to determine eps in DBSCAN

The clustering results, as shown in Fig. 2, visualize the performance of the algorithms.
The results highlight the distinctiveness of the clusters formed by each algorithm.

5 Discussion
In terms of Silhouette Score, K-Means is an algorithm that efficiently clusters distinct and
spherical data, achieving the highest value (0.32), suggesting that the clusters are well-
separated. However, K-Means requires the number of clusters to be determined in advance
and may perform poorly with non-spherical clusters.

In contrast, DBSCAN showed the lowest Silhouette score, indicating poor separation of
clusters. Despite this, DBSCAN is robust to noise and capable of identifying clusters of any
shape, though it suffers from parameter sensitivity and computational inefficiency for large
datasets.

For exploratory analysis, Hierarchical Clustering is useful as it visualizes the nested struc-
ture of the data. However, it is computationally expensive and has limited scalability.

The Gaussian Mixture Model (GMM) provides a flexible probabilistic framework to model
complex distributions. However, it is sensitive to the choice of covariance type and parameter
initialization.
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Figure 2: Results get with algorithms: a) K-means clustering, b) DBSCAN clustering, c)
Hierarchical clustering, d) GMM clustering

6 Conclusion
This study provided a comparative analysis of K-Means, DBSCAN, Hierarchical Clustering,
and GMM algorithms applied to 500 randomly selected geographical points in the Izmir
region. K-Means performed the best overall, achieving both the highest Silhouette score and
the lowest Davies-Bouldin score. On the other hand, DBSCAN performed the worst, with a
high Davies-Bouldin score and a low Silhouette score, suggesting that the clusters were not
well-defined.

While Gaussian Mixture Model (GMM) and Hierarchical Clustering showed moderate
performance, GMM achieved slightly better results than Hierarchical Clustering. The findings
emphasize the importance of choosing an appropriate clustering algorithm according to the
data characteristics and application requirements.

In conclusion, this study not only contributes to the field by offering a detailed perfor-
mance comparison of these algorithms within a specific geographical context, but also provides
guidance for practitioners in selecting the most suitable method based on their data attributes
and needs.
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