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TO CHANNEL FLOW MODELLING
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Abstract Machine-learning methods to enhance an approximation for the Reynolds-stress anisotropy
tensor are presented. The approach of tensor basis random forest is applied for this. The set of
input features and tensors in the basis are discussed. Different ways to propagate the Reynolds-
stress anisotropy tensor into the Reynolds-averaged Navier–Stokes equation solver are explored. It
is demonstrated that the conventional expression for Reynolds-stress anisotropy based on the linear
eddy-viscosity model is not able to reproduce a secondary flow in the square duct cross-section,
whereas the machine-learning modifications can fix such a disadvantage and have potentials for further
improvements of turbulence models.
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1 Introduction
The simulation of a turbulent flow has numerous applications in varied domains, such as
weather forecasting, dam flow control management, aerospace, energy, which require accurate
predictions. Such a flow has high values of the Reynolds number (Re) which is based on
typical length and velocity scales. The eddy-resolving methods, large eddy simulation (LES)
and direct numerical simulation (DNS), provide the high-fidelity predictions, but have com-
putational costs that grow exponentially as Re increases. Another conventional approach is
the Reynolds-averaged Navier–Stokes (RANS) equation model, which has the advantage of
much lower computational costs, at the expense of its accuracy. In order to overcome the low-
fidelity limitations, the use of machine learning (ML) in conjunction with traditional models
has been proposed [1, 2].

Multiple ML approaches have been developed and applied to improve the predictions of
RANS models, based on the tensor basis expansion [3], in particular: tensor basis neural
network (TBNN) [4, 5], tensor basis random forest (TBRF) [6–8], multi-dimensional gene
expression programming (MGEP) [9, 10], physics-informed machine learning (PIML) [11].
Moreover, other modern ML methods, e.g. physics-informed neural networks (PINNs) [12,13],
can be mentioned here to give more accurate solutions to the RANS equations.

The present paper focuses on the TBRF method which is similar to the TBNN where the
Reynolds-stress anisotropy (RSA) tensor is expressed as the linear combination of tensors from
a tensor basis [3]. Two canonical turbulent flow cases in channels without and with bumps are
considered here due to the available high-fidelity data sets collected together in the extensive
studies by RANS models [14,15]. The novelty is to examine the possibility of TBRF to obtain
the RSA distributions in a flow with a circular-shaped bump [16] which has not been done
elsewhere before [6,7], as well as to perform such an examination for a flow in a squire duct [17]
which is a simple prototype of more complex-geometry cases of engineering interest, e.g. a
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flow in a rod bundle [18]. Such a study of enhancing the RANS model approximations is quite
significant, since the conventional turbulence closures often fail when predicting the flow cases
with recirculation, streamline curvature, rotation, secondary currents, and other complicated
physical effects, so the new data-driven methods could substantially help to overcome the
model inaccuracy.

2 Reynolds stress approximation
The RANS equations are formulated for incompressible fluid as
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where Ui = ui is the mean velocity vector, ρ is the constant density, τij = u′iu
′
j is the Reynolds

stress, k = 1
2τii is the turbulent kinetic energy, p is the true mean pressure, which is replaced

by the modified mean pressure P = p + 2
3ρk [10] in many codes including OpenFOAM [19].

Boundary conditions differ for different flows and are set below when introducing the test
cases. The Reynolds-stress anisotropy tensor is defined as:
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2

3
δijk, (1)

where aij are the components of the Reynolds-stress anisotropy tensor, which can be normal-
ized:
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The unknown τij or aij quantity should be modeled. In conventional RANS closures, the
linear eddy viscosity model (LEVM) is applied to close the RANS equations:

aij = −2νtSij , Sij =
1
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)
, (3)

where aij depends linearly on the mean strain rate tensor Sij using the turbulent viscosity
νt = Cµk

2/ε = k/ω where Cµ = 0.09. Extra equations for k and ε or ω are added in
two-parameter (k − ε or k − ω) models to close the set of governing equations.

For more accurate prediction, the LEVM approximation can be generalized [3] with the
bij expression as the sum of tensors from a tensor basis (hereafter, tensors are written in their
compact form such as τ = τij , b = bij , ŜΩ̂ = ŜikΩ̂kj):
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(m),

where g(m), ∀m ∈ {1, . . . , 10} are the scalar coefficients predicted from the features λi, ∀i ∈
{1, . . . , P}. The tensor basis T(m) is defined as:
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is the normalized mean rotation rate tensor, Tr denotes the trace.
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3 TBRF Model
The TBRF is an agglomeration of tensor basis decision tree (TBDT). Each TBDT is a decision
tree that is constructed using a modified version of the classification and regression tree
(CART) algorithm. The CART algorithm performs the following process when creating any
node from the root: it repeatedly selects a feature j (at random pmax times) and partitions
the feature space into two bins, denoted as BL (left bin), BR (right bin) and written as:

BL(j, s) = {X|∀x ∈ X, xj ≤ s}, BR(j, s) = {X|∀x ∈ X, xj > s}, (5)

where X denotes all the observations, x is one observation with P features such that 1 ≤ j ≤
P , and s is the value of the split on the feature j.

The goal of the CART algorithm is to find the values that minimize the cost function
defined as follows:

J =
∑
x∈BL

(c1 − y)2 +
∑
x∈BR

(c2 − y)2, (6)

where y is the observed target of the observation x, and (c1, c2) are the predictions of (BL,BR).
Usually, the predictions of the bins (BL,BR) are their respective average. To find the optimal
value s for the feature j, the minimization problem can be written as:
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The optimum value of s can be found by comparing the cost value of J for all s between two
successive observed values of xj for the feature considered.

Once the optimum value for s together with its cost value has been found for pmax random
features, the s value of the feature j that best minimizes the cost function is kept in the node
as the splitting value for this feature. This process is then repeated for all subsequent nodes.

The adaptation for the tensor basis approach redefines Equations (6) and (7) as:
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where ∥z∥ =
√∑

ij z
2
ij denotes the Frobenius norm. Noticing that this minimization is the

sum of two least-square problems, and using the following matrix notation:
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where T is the matrix of flatten tensors from T, g is the vector of coefficients of T tensors,
and b is the flatten Reynolds-stress anisotropy tensor, the cost function can be rewritten as:

J =
N∑

n=1

[
∥Tng − bn∥2 + ∥αIg∥2

]
, (11)
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where the second term ∥αIg∥2 is an added regularization that is controlled with the hyper-
parameter γ = α2 from the TBDT. This regularization term is an incentive to have lower
values for g and to provide a smoother cost function [6].

Using such a least-square problem, it is possible to obtain the tensor basis coefficients g.
The derivative of J , with respect to g, can be set as equal to zero (implying an optimum) and
the coefficients are then defined as:

g =

(
N∑

n=1

[TT
nTn + γI]

)−1( N∑
n=1

TT
nbn

)
.

This whole process is used to construct multiple TBDT which form the TBRF. Some extra
hyper-parameters also define the TBRF model and their values can be tuned. Tab. 1 shows
the values used for the subsequent results. The numerical experiments have shown that the
small value for γ given in Tab. 1 yields better results, and the values for other parameters
provide good enough results while keeping the computational time low. The ceiling function
is denoted as ⌈·⌉.

The ML model is given by a set of input features summarized in Tab. 2.

4 Test cases and data sets
Two canonical flows in the channel with a bump (CB) and square duct (SD) are considered.
Both of these cases are taken from a dataset compilation for ML applications [14], which
provides the high-fidelity data extracted from the previous LES [16] and DNS [17] studies.
Different parameters are selected for each flow, adding up to a total of eight cases. The
reference data sets are also complemented by the results of five popular turbulence models
obtained at the optimal meshes which have been chosen after the careful mesh-convergence
and grid-independence studies [14]. These optimal mesh arrangements (Figs. 1 and 2) are
taken in the present computations too.

The Reynolds number for the CB case is defined as Reh = U∞h/ν where h is the bump
height, and U∞ is the free stream inlet velocity. The Reh values vary from 13260 to 27850
depending on the bump height range h ∈ {26, 31, 38, 42} mm while the cord length is set
to C = 305 mm [16] (Fig. 1). At the bottom wall, no-slip boundary condition is applied,
whereas at the top (upper boundary) free-stream condition is specified, which is identical to
the symmetry one. At the inlet boundary the distributions for the velocity, k and ε or ω
values are assigned, corresponding to the turbulent boundary layer on the channel bottom.

Figure 1: Domain and mesh scheme for CB case;
each fourth grid line is shown.

Figure 2: Domain and mesh
scheme for SD case; symmetry
planes are depicted in red.
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At the outlet boundary, zero gradients in the normal direction are set for these quantities.
For pressure, zero gradients in the normal direction are fixed for all boundaries.

For a SD flow, only the bottom-left quadrant of its cross-section is taken into account
due to symmetry properties (Fig. 2), and the Reynolds number is defined as Reb = Ubh/ν ∈
{2600, 2900, 3200, 3500} where h is the duct half-width, Ub is the bulk inlet velocity [17]. At
the bottom and left walls, no-slip boundary condition is applied, whereas the top and right
boundaries have symmetry conditions. Along the third direction (x), there is an only cell with
periodic conditions at its downstream and upstream faces. For pressure, zero gradients in the
normal direction are fixed for all boundaries. The mean-pressure-gradient source term is added
to the mean momentum equation (via meanVelocityForce inside fvOptions in OpenFOAM)
to maintain a specified bulk velocity along the square duct as in [18].

For both flow cases, due to homogeneity of the mean quantities in time, the time derivatives
in the momentum equation can be omitted (or used in the solver to obtain relaxation to a

Table 1: Hyper-parameters of the TBRF, and their values.
Hyper-parameter Value Description
γ 1.0× 10−8 Regularization parameter

pmax

⌈√
P
⌉
= 5 Number of features to choose from when per-

forming a split
nestimators 50 Number of TBDTs in the TBRF
rsamples 0.3 The fraction of samples to use from each

dataset when bootstrapping

Table 2: List of features {λ1, ..., λ17} = FS1∪FS2∪FS3 used as input in the ML algorithms,
taken from [6,11]; amounting to a total of P = 17 features. For each of the tensor quantities
in FS1 and FS2, their trace is taken instead of the tensor quantities.

Set Raw feature Normalization Details
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Ŝ, Âk

2
Ŝ
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stress∣∣∣ūiūj ∂ūi

∂xj

∣∣∣ √
ūlūlūi
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(a)

(b)

(c)
Figure 3: Components of aij for the CB testing case at h = 38 mm obtained from the data of
LES (denoted as HF) [16], LEVM model (denoted as BM), ML prediction: (a) a11/U

2
∞, (b)

a22/U
2
∞, (c) a12/U

2
∞; colour legend is shown once for each row.

(a)

(b)

(c)

(d)
Figure 4: Components of aij for the SD testing case at Re = 3500 obtained from the data of
DNS (denoted as HF) [17], LEVM model (denoted as BM), ML prediction: (a) a11/U

2
b , (b)

a22/U
2
b , (c) a12/U

2
b , (d) a23/U

2
b ; colour legend is shown once for each row.
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time-independent solution with pseudo-time steps serving as iterations). Therefore, the initial
conditions can be set arbitrarily, for instance, to be as in a fluid at rest, and solution proceeds
up to its convergence to a steady-state solution with pseudo-time step iterations. Moreover,
the steady-state two-dimensional solutions depend only on the two spatial coordinates x and
y (for CB case), y and z (for SD case).

5 Results
The numerical simulations (which results for the cases introduced above are presented below)
use the hyper-parameters and features shown in Tabs. 1 and 2.

For the CB cases, the ML model has been trained on the data sets with h ∈ {26, 31, 42}
mm and tested on the case with h = 38 mm. In Fig. 3, it is observed that the LEVM model
yields the incorrect RSA distributions over the bump, while the ML plots better reproduce
the HF data.

For the SD cases, after training the ML model on the high-fidelity data sets with Re ∈
{2600, 2900, 3200}, the resulting model has been used to predict the Reynolds-stress anisotropy
for the case with Re = 3500. The results are given in Fig. 4 where the a33 and a13 components
are omitted as they are equivalent to a22 and a12 respectively after mirroring along the bisec-
tor plane y = z. It can be observed that the conventional LEVM approximation predicts zero
values for a11, a22 (and a33), a23, while the ML model provides more realistic and accurate
results.

Figure 5: The normalized mean velocity component Uy/Ub after propagation of RSA into
the solver, for the SD testing case at Re = 3500: DNS data (denoted as HF) [17]; RDNS
prediction after propagation of RSA taken from DNS; ML prediction.

Figure 6: The normalized mean velocity vector components, for a SD flow at Re = 3500:
1 – DNS [17], 2 – measurements [17], 3 – RDNS predictions (present study), 4 – LEVM
model [14], 5 – MGEP predictions [21].
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Next, the RANS equations closed with the standard k−ω model [20] are solved numerically
for the SD case at Re=3500 in OpenFOAM, with the Reynolds stress taken directly from the
DNS data [17], or from the linear LEVM approximation, or from the non-linear modification
using the TBRF model. In Fig. 5, the mean velocity of a secondary flow obtained after the
Reynolds-stress propagation into the RANS equations is shown. Again, the component Uz

has been omitted as it is equivalent to Uy after its mirroring along the bisector plane. The
LEVM model does not predict secondary flows with non-zero Uy and Uz at all, while the ML
model provides more accurate results.

The Reynolds-stress propagation from the conventional LEVM model yields the invalid
(zero) reproduction for a secondary flow in the SD cross section, whereas the data-driven
quadratic MGEP approximation [21] improves the predictions (Fig. 6). On the other hand,
RANS-DNS runs (RDNS), where the frozen aij values from the DNS data [17] are inserted
into the RANS equations, reveal as in [6,11] the better performance versus that with LEVM
or MGEP. It yields possibility of further model enhancement by ML algorithms (like TBNN,
TBRF or their extensions) where high-fidelity data serve as target solutions, if their ML
mimics correspond well to targets.

6 Conclusion
The TBRF algorithm has been implemented to enhance the performance of the baseline k-ω
model, using the high-fidelity data of DNS or LES for canonical flows in channels with and
without bumps. It has been shown that the predictions for the Reynolds-stress anisotropy
tensor components are improved in comparison with those for the baseline LEVM approx-
imation as shown in a priori test. The propagation of the Reynolds-stress anisotropy from
DNS/LES or ML results can improve the mean velocity predictions, compared to those for
LEVM, in particular, for a secondary flow in the SD case.

In future studies, the further improvement in accuracy of results is possible when carefully
selecting optimal sets of appropriate training cases, tensor basis terms, input features, hyper-
parameters of the ML algorithm, and making global iterations to refine the Reynolds-stress
model. Moreover, the comparative analyses of the TBRF algorithm results versus those for
other tensor basis methods, like TBNN, MGEP, and against other modern ML methods, like
PINNs, would be of considerable interest too.
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