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MELTING OF CLOUDY ICE UNDER IRRADIATION
BY AN ARTIFICIAL RADIATION SOURCE

Sleptsov S. D. 1, Savvinova N. A.

Abstract The problem of melting a layer of ice with bubbles containing radiation-absorbing
gas was carried out using a numerical method. The problem statement is radiation-conductive
heat exchange in a semitransparent two-phase medium that selectively absorbs radiation with
a first-order phase transition. The radiation transfer equation was solved by a modified mean
flux method, taking into account a wide range of optical properties of the two-phase medium
and the radiation source. The melting rate and growth of non-irradiating boundary depending
on various optical parameters of the medium are calculated. The significant influence of
anisotropic scattering and strong absorption of radiation by gas on the heating and melting
of the ice layer is shown.
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1 Introduction

Natural ice may contain various inclusions, including water vapor, carbon dioxide,
methane, and other gases [1] - [2], which absorb heat radiation. In our work, we
consider cloud ice [1] is a two-phase translucent medium. Studying the properties of
such ice is of interest, since the gases contained in it may be greenhouse gases. In [3],
[4], [5], the authors mainly considered ice as a light-scattering medium and neglected
the effect of radiation absorption by bubble gas contained in ice. In [6], radiative-
conductive heat transfer with a first-order phase transition in a snowpack containing
solid inclusions - soot, depending on the absorption coefficient, was considered. In [7],
a mathematical model of ice heating and melting in the high-altitude lake Ngoringo in
the Xinjiang Tibetan Plateau (Peoples Republic of China) is presented. The presented
model showed good agreement with the results of field observations and the authors
recommend using the model to predict the ice state of rivers, lakes and sea ice. At
the same time, the model does not take into account the volumetric absorption of
radiation by various inclusions. In this paper, the optical properties of the gas phase
on the melting the layer of the ice are investigated.
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Figure 1: Geometric scheme of the problem.

2 Problem statement

This work is a continuation of our research, which uses the approach described in
[4], [5]. The formulation of the problem corresponds to the experimental conditions
created in [8] (Fig. 1). The constant temperature T∞ supported into a climate control
equipment. The layer of ice is adhered on an opaque, vertical bakelite substrate and
irradiated by source with a filament temperature of 3200 K. Ice is an optical medium
in which radiation is selectively absorbed and anisotropically scattered in a translucent
medium. We assume that all bubbles are spherical with an average radius of rb and
that they are uniformly distributed over the volume with fV for simplicity. The gas in
the bubbles selectively absorbs radiation. The selectivity of the radiation is modeled by
three bands of the absorption spectrum. Tab. 1 presents the spectral properties of ice
[1], the radiation source, and the absorption coefficients of the gas. Optical properties
of ice layer boundaries are presented in [4] - [5].

The solution to the problem is divided into two stages and is described in [4]-[5].
The non-stationary energy equations for the substrate with temperature T1(z, t)

and the ice layer with temperature T2(x, t), taking into account the content of the gas
phase in the bubbles, are written as follows [4]:
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Here ci is the heat capacity, ρi is the density, λi is the coefficient of thermal conduc-
tivity, ai is the thermal diffusivity (i = 1, 2, substrate and ice, respectively). λ2 =

Table 1: The Values of spectral parameters of absorption coefficient, parameter of
scattering of ice and the radiation source.

j λj, µm αj, m−1 αgas,j, m−1 E∗
j ,W m−2

1 0.33 – 0.75 2.8 0; 1.5; 50 645
2 0.75 – 1.5 10 0; 1.5; 50 2151
3 1.5 – 3.0 450 0; 1.5; 50 1371
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(1− fV )λice + fV λgas is the effective thermal conductivity of ice, where λice and λgas

are the thermal conductivity of pure ice and gas, respectively. c2 = (1− fV ) cice+fV cgas
is the effective heat capacity of ice, where cice and cgas are the heat capacity of ice and
gas, respectively. E(x, t) = E+(x, t)−E−(x, t) is the density of the resulting radiation
flux.

Boundary conditions for the ice heating stage:
T1(z, t) = Tsub, z = 0,

−λ1
∂T1(z, t)
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Here h is the heat transfer coefficient, |Eres| = A2 (E
+ + E∗) − ε2σ

4
0 (T

4
2 − T 4

∞), σ0

is the Stefan-Boltzmann constant. Eqs. (1) and (2) are supplemented by the initial
condition: T1(z, 0) = T2(x, 0) = Tsub.

At the phase transition stage, the boundary conditions (2) for the substrate and the
left ice surface do not change, the temperature of the irradiated boundary
T2(L2(t), t) = Tf is constant. The boundary condition of the right surface is trans-
formed into the Stefan condition, taking into account the formed water film:
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, γ is latent heat of the phase

transition. Eq. (1) at the second stage is supplemented by the initial condition:
T2(x, 0) = q(x) and L2(0)/L2 = 1.

The resulting radiation flux densities E±(x, t), Eν =
∑

j

(
E+

j − E−
j

)
, included in

Eqs. (1)-(3) are solved by the differential modified mean flux method, first used to solve
neutron transport in nuclear reactors [9] (j is the number of the spectral band). In this
method the integral-differential equation of radiation transfer is reduced to a system
of two nonlinear differential equations for a plane layer of a semitransparent absorbing
and anisotropic radiation scattering medium are represented in the form [9]-[10]:
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The boundary conditions are as:
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Here Bj is the Planck function, ωj,tr = βj,tr/κj,tr is the transport albedo of the single
scattering; n is the refractive index of the medium; n∗ is the refractive index of the
ambient air, βj,tr is the transport scattering coefficient; αj is the absorption coefficient;
τj,tr = κj,trL2(t) is the optical thickness. The values of the coefficients m± and l±

are determined from the recurrence relation obtained using the formal solution of the
radiation transfer equation [9].
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To take into account anisotropic scattering of radiation from spherical particles with
average radius much larger than the wavelength of the incident radiation, rb ≫ λj, we
use the method of transport approximation [3], [6]-[7]:

βtr = 0.675 (n− 1) z, z = fV /rb. (6)
Eq. (1) with boundary conditions (2)-(3) and Eq. (4) with boundary conditions (5),

taking into account (6), are reduced to a dimensionless form in the same way as it
is done in [11]. The solution to the problem consists in determining the dynamics of
melting and temperature increase of the non-irradiated ice surface depending on time.

3 Discussion

The following is an analysis of the results of numerical calculation of the substrate-
ice system with the following physical parameters: substrate thickness L1 = 0.015 m,
initial ice thickness L2 = 0.045 m, temperature of the left boundary of the substrate
and initial ice temperature Tsub = T2(x, 0) = 260 K, constant atmospheric temperature
inside the chamber and ice melting temperature Tf = T∞ = 273 K. Thermophysical
properties of bakelite substrate and ice: thermal conductivity λ1 = 0.232 W/(m K),
λ2 = 1.88 W/(m K); heat capacity c1 = 1590 J/(kg K), c2 = 2200 J/(kg K); thermal
diffusivity a1 = 1.1 · 10−7 m2/s, a1 = 1.04 · 10−6 m2/s [8]; latent the heat of the phase
transition γ = 335 kJ/kg. Optical parameters: refractive index of ice n = 1 (for air
n∗ = 1), emissivity of the right irradiated surface ε2 = 0.115, left reflection coefficients
R1 = 0.96 and R2 = 1− ε2, emissivity of the left boundary ε1 = 1− R1. The spectral
characteristics of the ice and the radiation source are presented in Tab. 1. αgas, z, rb
were varied in the calculations.

Figs. 2 and 3 show the growth rate of the temperature of the non-irradiated surface
and the dynamics of melting of the ice layer. Fig. 2 shows the temperature growth rate
of the non-irradiated surface of the ice layer for different scattering parameters z and
rb and different αgas,j. We used z = 10 and 30 m−1 and rb=10−4, 10−3 and 10−2 m in
the calculations. The graphs show that the rate of temperature growth depends more
strongly on the average radius of the bubbles. The z parameter does not greatly affect
the temperature increase, however, an increase in both parameters, and therefore an
increased value of the gas phase fV , leads to a general decrease in temperature at the
beginning of the melting stage. This can be explained by a decrease in the effective
thermal conductivity and heat capacity of the condensed phase and absorption of the
gas phase closer to the right boundary.

The rate of melting of the ice layer (Fig. 3) is practically independent of optical
parameters due to the small thickness of the layer; in the initial position it is 4.5 cm.

Fig. 4 shows the results of calculations on the influence of the spectral absorption
band on the heating and melting of the ice layer depending on αgas,j = 50 m−1 and with
scattering parameters z = 30 m−1 and rb = 10−3 m. Fig. 4a shows the temperature
field at the final point of the heating stage calculations. As can be seen from the graph,
taking into account the gas absorption coefficient in the most absorbing part of the
spectrum of the ice layer, j=3, does not lead to strong changes in temperature, the
maximum difference reaches ∼ 0.02 Celsius. Obviously, this circumstance does not
affect the rate of ice melting (Fig. 4b). The reason lies in the spectrum of the artificial
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Figure 2: Dynamics of temperature growth of the left non-irradiated boundary of the
ice layer in the melting stage at different values of the scattering parameters and αgas

(a is the αgas = 0, b is the αgas = 1.5m−1, c is the αgas = 50m−1).

Figure 3: Dynamics of melting of the cloudy ice layer at different values of the
anisotropic scattering parameters and αgas (See nomenclature in Fig. 2).

radiation source, where most of the total incident radiation falls on the “transparency
windows” of the ice, and a smaller part in the IR-range (1.5-3 µm) and where ice has
maximum absorption (see Tab. 1). Radiation falling on a layer of ice is most effectively
absorbed and scattered in the spectral regions j=1 and 2, heats and subsequently melts
the ice, while in j=3 the incident radiation does not enter the volume of the medium
and is absorbed mainly on the surface. If the bubbles contain a gas with an absorption
spectrum in the j=3 range, for example, methane, it will not have a strong effect on
the melting of ice, but will still be released into the atmosphere, where it will become
part of the greenhouse gases.

Figure 4: The temperature field in the ice layer at the end of melting (a) and the
melting rate (b) of the ice layer, depending on the αgas,j.
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4 Conclusion

The numerical calculation of the melting dynamics and thermal state of the cloudy ice
layer was performed using mathematical modeling methods. In the problem statement,
the ice layer is represented as a two-phase translucent medium. To solve the radiation
part, the method of mean fluxes with three absorption bands was used; anisotropic
scattering was taken into account using the transport approximation method. It is
shown that weak absorption of radiation from the model gas does not greatly affect
the heating and melting of the ice layer. Melting is more influenced by the strong
absorption of radiation by the gas and the average radius of the bubbles. There is
no need to take into account the absorption of radiation by gas in the IR range when
irradiating ice with a high-temperature radiation source. The calculation results can
be used by various monitoring services.
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