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Abstract Hospital patient readmission is defined as a situation where a patient is treated
again in a hospital after she is discharged within a specific time frame: 30 days, for ex-
ample. This research aims to predict whether or not a patient will be readmitted from a
hospital by applying predictive modeling which is learned from historical data. Our patient
dataset is extracted from MIMIC-IV, which consists of an electronic health record dataset in
Beth Israel Deaconess Medical Center (BIDMC) from year 2008 to 2019. Our experiments
utilize four categories of models that are linear (logistic regression and linear discriminant
analysis), non-linear (K-nearest neighbors, naive Bayes, decision tree, and support vector ma-
chines), ensemble (bagging classifier, random forests, and extra trees), and boosting models
(adaboost, stochastic gradient boosting). The performance evaluation of each model is using
balanced accuracy because of imbalanced classes in our dataset. Additionally, each model is
processed through 10-fold cross-validation and followed by a hyperparameter tuning process
which eventually reports that the tree-based models, such as decision trees, extra trees, and
random forests achieve the highest balanced accuracy. This study also identifies the features
that significantly influenced the model’s predictions by utilizing the cumulative reduction in
both the mean and standard deviation of impurity and two global model-agnostic techniques,
that are permutation feature importance (PFI) and SHapley Additive exPlanations (SHAP).
The results obtained from these three different approaches are consistent, highlighting that
the average levels of hematocrit, sodium, and platelets in the blood, coupled with the duration
between a patient’s registration and discharge from the hospital are critical features that have
a substantial impact on the prediction outcomes.

Keywords: Hospital patient readmission, MIMIC-IV, Machine learning, Random forests,
Mean-impurity-decreased-based features, Permutation Feature Importance, SHAP.

AMS Mathematics Subject Classification: 68T05, 68T07.
DOI: 10.32523/2306-6172-2024-12-4-32-46

1 Introduction

A hospital patient readmission is defined as a situation where a patient whom a hospital
has discharged comes again to the hospital after a certain period, for example, 1 month
or 3 months [1]. Mostly, a readmission infers that a patient has not fully recovered,;
consequently, the readmission even more makes a patient’s treatment more costly than
the absence of a readmission. Besides being a reliable indicator of the effectiveness and
quality of hospital treatment provided to patients, readmission rates have been used as
a publicly reported metric for comparing hospitals and determining reimbursement of
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Figure 1: Supervised learning is identical to learn a learning between A and B.

hospital services [25, 11, 18, 16, 20]. Moreover, reducing the number of hospital read-
missions can significantly decrease financial and healthcare redundancies; consequently,
the quality of care is improved [8, 4].

Nowadays, most attention to reducing the amount of hospital readmissions shifts
to utilizing Machine Learning (ML) as predictive models. Additionally, several data
sources from Electronic Health Record (EHR) systems and Healthcare Information
Systems (HIS) have been released publicly and can be used to train the models [27,
20, 6]. The type of model training which has been widely adopted and is so successful
for many applications is supervised learning. Supervised learning treats the model as
a function and enables the function to learn the relationship between input (A) and
output (B) through the dataset as depicted in Fig. 1 22, 13, 24].

A wide range of supervised learning algorithms and features have been proposed for
readmission prediction and compiled into several surveys [27, 6, 12, 26]. Wang et al.
[27] summarizes that the predominant focus of research involves utilizing regression-
based approaches (specifically logistic regression), neural networks, and ensemble tech-
niques like bagging, boosting, random forest, and gradient boosting, among the avail-
able methods. Our work utilizes similar learning algorithms and adds Light Gradient
Boosting Machine (LightGBM) [15] to our list of models. Furthermore, they classify
features into demographic, admission and discharge information, clinical information,
hospital information, textual information, hybrid information, and latent features. Our
research uses demographic, admission and discharge information, and clinical informa-
tion features from the MIMIC-IV dataset [14].

Chen et al. [6] report that Random Forest (RF) is the mostly used learning algo-
rithm in their study, followed by Gradient Boosting Machine (GBM), neural network-
based algorithms, and Support Vector Machines (SVM). Particularly, GBM outper-
forms the other algorithms in terms of Receiver Operating Characteristic Area Under
Curve (ROC AUC). Another effective learning algorithm is neural networks (NN). Deep
Neural Networks (DNN) achieved a higher ROC AUC compared to Logistic Regression
(LR), Random Forest, and Naive Bayes (NB), displaying superior performance. Ad-
ditionally, this article describes identified factors related to heart failure (HF) such as
"age", Charlson comorbidity index, number of admissions in 6 or 12 months before in-
dex HF admission, and drug use before HF admission. Our work also compares all the
mentioned algorithms; furthermore, we utilize factors that are far more comprehensive
and general for any disease than their specific features.

Huang et al. [12] summarize that tree-based methods, Neural Networks (NN), lo-
gistic regression with regularization, and Support Vector Machines (SVM) emerge as
the prevalent algorithms. They also outline the percentages of methods for model val-
idation across studies, that are internal validation (77%), training/testing split (49%),
resampling (28%), external validation (9%), and no validation (6%). Our study also
includes a comparison of all the algorithms that have been mentioned and additional
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algorithms; therefore, we employ a greater number of algorithms, making our list more
extensive than theirs.

Teo et al. [26] provide a summary indicating that widespread algorithms include
LR, SVM, Decision Tree (DT) and its variations, such as RF and GBM. Among the
models based on neural networks, DNNs or Multilayer Perceptrons (MLPs) have gained
extensive usage. Furthermore, they argue that an enormous volume of electronic clin-
ical data does not guarantee improving predictive ability because of the absence of
relevant data. However, while certain elements, like social factors, have been demon-
strated to be linked to a heightened risk of readmission, this information is not easily
accessible within healthcare institutions.

de Sé et al. [7] also describe the development of a predictive machine learning
algorithm for patient readmission, utilizing data from the MIMIC IV dataset. How-
ever, they extract fewer features (14) than ours (27). Specifically, prominent features
(number of mean hematocrit, number of mean plaletet, number of mean sodium, and
discharge duration) which contribute significantly to predictions are not extracted.
Therefore, our ROC AUC is higher than theirs.

Assaf et al. |2] conduct a study comparable to ours, but they employed the MIMIC
1T dataset, a predecessor to MIMIC IV. Despite using a different dataset, their findings
align with ours in that the Random Forest classifier demonstrates the highest accuracy.
However, their study focuses solely on prediction outcomes, while our research goes
further by identifying the key features that influence the prediction results.

This research aims to employ machine learning to predict of readmission occur-
rence. In particular, the MIMIC-IV dataset [14] is utilized in this study. As far as
we know, this research represents the initial endeavor to develop general-purpose hos-
pital readmission prediction models without concentrating on particular diseases. A
comparative analysis was conducted to determine the optimal classification accuracy,
employing eleven machine learning algorithms, namely Logistic Regression (LR), Lin-
ear Discriminant Analysis (LDA), k-Nearest Neighbors (kNN), Naive Bayes (NB) [3],
Decision Tree (DT), Support Vector Machines (SVM), Bagging Classifier (BC), Ran-
dom Forest (RF), Extra Trees (ET), Adaboost (AB), and Stochastic Gradient Boosting
(SGB). Additionally, we also investigate the most crucial features that have the most
significant impact on predicting hospital readmissions.

2 Datasets and Methods

2.1 Datasets

This research utilizes MIMIC-IV, a dataset of electronic health records covering ad-
missions from 2008 to 2019 at Beth Israel Deaconess Medical Center (BIDMC) [14].
MIMIC-IV consists of three modules, namely hosp, icu, and note. The hosp mod-
ule contains records of patient admissions, discharges, and transfers. The icu module
records all information documented in the Intensive Care Unit (ICU) and the note
module consists of summaries of discharge information and radiology reports.

The features used in this study are taken and extracted from the hosp and icu
modules. Particularly, there are two types of features in the dataset. The first type is
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patients’ numerical information, which are easily extracted, such as heart rate mean,
standard deviation (std) of diastolic blood pressure, std of respiration rate, calcium
mean, potassium mean, std of calcium, std of potassium, diastolic blood pressure mean,
respiration rate mean, std of glucose, std of systolic blood pressure, hematocrit mean,
sodium mean, std of hematocrit, std of sodium, glucose mean, systolic blood pressure
mean, std of heart rate, albumin mean, platelet count mean, std of albumin, and std
of platelet count. The second type of features are features that must be constructed,
such as age, length of stay, discharge duration, number of transfers, and Charlson
comorbidity index.

2.2 Methods

The first step in this research methodology is the creation of features. First, the creation
of the age feature is described. The patient’s age is not explicitly given in the dataset
to protect the patient’s personal information. The information provided is the anchor
age which is not the actual age, the anchor year which is the reference year, and the
registration time of the patient. Therefore, the patient’s age can be calculated using
the following formula:

age = admission_time — anchor year + anchor age.

Next is the discussion of ethnicity features. The ethnicity feature is already present
in the dataset, but due to the large number of ethnicities, this feature is subjected to
normalization by focusing on 4 (four) major ethnic types such as white, Latina, Asian,
and black. Ethnicities other than these four categories are categorized as others. The
discharge location feature (where the patient has finished undergoing treatment or
medication) has 3 values, that are home, medical facility, and others. Furthermore,
the discharge duration feature is computed by calculating the time difference from
registration in the hospital and discharge from the same hospital. The readmission
feature (is readmission or not?) is created by calculating the time when a patient re-
registers. If the time exceeds 30 days, the patient is categorized as a readmission case.
The number of transfers feature is calculated based on the number of times a patient
moves from regular inpatient care to ICU care. We then calculate the amount of time
a patient stays in the ICU, also known as the length of stay (LOS) [1]. The Charlson
comorbidity index feature is generally calculated by means of

Charlson Comorbidity Index = age conversion + Z I(disease)+

diseasec A
max{/(mild liver disease),3 x I(severe liver disease})+

max{2 x I(diabetes with cc), I(diabetes without cc)}+
max{/(malignant cancer), 6 x I(mst)}+
2 x I(paraplegia) + 2 x I(renal disease)+
6 x I(AIDS) (1)

where I(disease) = 1 if there is disease in the patient and 0 if there is no disease in
the patient, cc = chronic complication, and mst = metastatic solid tumor, and A = all
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diseases except mild liver disease, severe liver disease, diabetes with cc, diabetes without
cc, malignant cancer, mst, paraplegia, renal disease, and Acquired Immunodeficiency
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if age < 50 then

conversion < 0
else if age < 60
then

conversion < 1
else if age < 70
then

conversion < 2
else if age < 80
then

conversion < 3
else

conversion < 4

end if.
Figure 2: Pseudocode.

Syndrome (AIDS).

The diseases that are considered important in calculating Charlson comorbidity
index are myocardial infarction, congestive heart failure, peripheral vascular disease,
cerebrovascular disease, dementia, chronic pulmonary disease, rheumatic disease, pep-
tic ulcer disease, and the diseases mentioned in Equation 1. The age conversion is

calculated according to the following pseudocode (see Fig. 2).

To summarize, the total number of features used is 34, with 27 numerical features
and 7 categorical features depicted in Tab. 1 and Tab. 2, respectively. Furthermore,

these categorical features are converted into one-hot encoding forms [10].

Table 1: A list comprising 27 numerical features

Age discharge duration number of transfers
Length of stay = Mean Diastolic BP Mean Glucose
Mean Heart Rate = Mean Resp Rate Mean Systolic BP
Std Diastolic BP Std Glucose Std Heart Rate
Std Resp Rate Std Systolic BP Mean Albumin
Mean Calcium Mean Hematocrit Mean Platelet Count
Mean Potassium Mean Sodium Std Albumin
Std Calcium Std Hematocrit Std Platelet Count
Std Potassium Std Sodium Charlson comorbidity index

Table 2: A list comprising 7 categorical features
Admission type Discharge location Insurance
Race Gender First care unit
Last care unit
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Figure 4: Among the five histograms, discharge duration, length of stay, and mean
diastolic BP have heavy tails.
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Figure 5: Example of discharge duration feature transformation with logarithm func-
tion.
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Next, we investigated the linear correlation values between numerical features and
is_readmission. Pearson correlation calculations show that discharge duration, number
of transfers, and mean potassium have high values. Meanwhile, the scatter plot of those
numerical features is depicted in Fig. 3.

In the next stage, the features will be subjected to a feature scaling process. How-
ever, histograms of some numerical features such as discharge duration, length of stay,
and mean diastolic BP have a skewed right or heavy tail distribution (Fig. 4). There-
fore, these features need to be transformed with a logarithmic function before they are
standardized or normalized [10].

An example of a feature subjected to the logarithmic function, namely discharge
duration, can be seen in Fig. 5. The total numerical features transformed by the loga-
rithm function is 7 (seven), such as discharge duration, length of stay, mean diastolic
BP, mean glucose, mean systolic BP, standard deviation of heart rate, and standard
deviation of systolic BP.

After preprocessing the raw dataset, the number of samples becomes 19,967. Sub-
sequently, the dataset is randomly divided into train and test sets with 80% and 20%,
respectively. Training instances that are anomalies are discarded using the Isolation
Forest algorithm [17, 10]. In the next step, the training instances are subjected to Z-
scale feature normalization. Furthermore, various types of widely-used machine learn-
ing models in data science competitions, including linear, non-linear, ensemble, and
boosting models, are employed and evaluated side by side. The linear models include
Logistic Regression and Linear Discriminant Analysis (LDA), while the ensemble mod-
els encompass K-nearest neighbors (K-nn), Naive Bayes, Decision Tree, and Support
Vector Machines (SVM). Among the ensemble methods are the Bagging classifier with
multiple Decision Trees, Random Forests, and Extra Trees. Lastly, the boosting mod-
els comprise Adaboost, Stochastic Gradient Boosting, and Light Gradient Boosting
Machines (Light GBM).

As we employ numerous models, we opt to perform a two-stage evaluation pro-
cess. Initially, all models are assessed using scikit-learn’s default settings, and their
performances are compared utilizing the stratified 10-fold cross-validation technique.
Subsequently, we selected the top three models and conducted hyperparameter tuning
on them.

The selected metric for evaluation is balanced accuracy, which offers an advantage
by mitigating inflated accuracy due to imbalanced datasets. Moreover, the balanced
formula is given as follows:

1 TP TN
balanced accuracy = c\TPTFN + TN + FP 2)

where T'P is true positive, T'N is true negative, F'P is false positive, and F'N is false
negative. Equation (2) can alternatively be interpreted as the average recall across
all classes, meaning that in a balanced dataset, the balanced accuracy aligns with the
accuracy value.
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2.2.1 Global Model-Agnostic Methods

Once we assess the performance of machine learning models, we proceed to examine
the features that that substantially influence the prediction outcomes. Specifically, we
employ two different techniques that are independent of the specific model being used
to evaluate the significance of various features. These techniques include Permutation
Feature Importance (PFI), which measures how much a model’s prediction changes
when a feature is permuted and SHAP values, which attribute the prediction to each
feature.

Firstly, we employ Permutation Feature Importance (PFI) [9, 21] to gauge the
importance of the features in Tabs. 1 and 2. Basically, PFI assesses how much the
prediction error of the model rises when the values of a feature undergo permutation,
effectively disrupting the correlation between the feature and the actual target value. A
feature is significant if randomly changing its value leads to a larger error in the model’s
predictions. This condition indicates that the model uses and depends on that feature
when making its predictions. On the other hand, a feature is unimportant if randomly
altering its values does not impact the model’s prediction error. This condition suggests
that the model does not rely on that particular feature when generating predictions.

Secondly, SHAP (SHapley Additive exPlanations) is a technique employed to ex-
plain the prediction made by a model for a specific data instance [19]. SHAP calcu-
lations are based on an optimal game theory concept called Shapley values. These
numerical numbers explain how each feature and its corresponding value influence or
contribute to the prediction made by the model. Specifically, we are interested in
understanding how much each individual feature value contributes to the prediction
relative to the average or expected prediction value. Assume that h(x) represents the
prediction made by a model for a particular instance x,

where x1, x9, - - - , x, are feature values and our goal is to compute the contributions of
each component or feature that led to that prediction. The contribution, represented
by ¢;, of the j-th feature to the prediction h(x) [21] is defined as follows:

¢j(h) = Bjr; — E(B;X;) = Bjz; — B E(X;)

where E(8;X;) represents the average effect estimate for the j-th feature. If we add
up all the contributions from the feature values of a single instance, the result is as
follows:

Z ¢j(h) = Zﬁj%’ —E(B;X;) = (Bo+ Zﬁﬂj) — (Bo + Z E(B;X;))
= h(z) — E(h(X)) (4)

Equation (4) shows that the sum of the contributions from all feature values for a
given instance is equal to the predicted value for that instance minus the average
predicted value across all instances. The principle behind the SHAP (SHapley Additive
exPlanations) method for determining feature importance is straightforward: features
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Table 3: Results of stratified 10-fold cross-validation of all models. The models marked
with the T symbol perform the highest.

Balanced Accuracy
Linear Models

Logistic Regression 50.81%
Linear Discriminant Analysis | 50.85%
Non-linear Models
K-nn 56.52%
Naive Bayes 50.92%
Decision Tree' 61.99%
SVM 50.45%
Ensemble Models _
Bagging Classifier 56.49%
Random Forests' 58.34%
Extra Trees 58.90%
Boosting Models
Adaboost 57.65%
Stochastic Gradient Boosting | 56.70%
Light GBM 55.54%
Table 4: Parameters of models tested in hyperparameter tuning
Model Hyperparameter Value Range
Decision Tree | - criterion [gini, entropy, log loss|
- splitter [best, random)|
Extra Trees - n_estimators [100, 300, 900, 1200]
- criterion entropy
Random Forest | - n_estimators [100, 300, 900, 1200|
- criterion entropy
Table 5: Performance of the best three models on test set
Model Best Hyperparameter | Balanced Accuracy
Decision Tree criterion : log loss 61.98%
- splitter: best
Extra Trees - n_estimators : 100 61.85%
- criterion: entropy
Random Forests | - n_estimators: 100 63.70%
- criterion: entropy

that have high Shapley values are considered to be influential and carry significant
weight in the model. The feature importance values can be derived by taking the
average of the absolute Shapley value contributions for each individual feature across
all the data points,

o]
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3 Results and Discussion

Tab. 3 displays the results of the balanced accuracy evaluation across all models in the
stratified 10-fold cross-validation. Tree-based machine learning models display superi-
ority compared to other models of different types. This contradicts a recent literature
study [6] suggesting that Gradient Boosting Machines, in this case Light GBM, typi-
cally outperform other algorithms in terms of Receiver Operating Characteristic-Area
Under Curve (ROC-AUC) performance, which is analogous to balanced accuracy.

Afterward, we select the top three models from Tab. 3 for hyperparameter tuning.
The hyperparameter ranges experimented with on these three models are illustrated
in Tab. 4.

Once the hyperparameter tuning process completes and identifies the optimal hy-
perparameter settings for each model, the three algorithms are trained using these best
parameters on the entire training set and then evaluated on the test set. Tab. 5 indi-
cates that Random Forests display higher accuracy compared to both Decision Trees
and Extra Trees. Additionally, we present the ROC-AUC curves for Decision Tree, Ex-
tra Trees, and Random Forests in Figs. 6, 7, and 8, respectively. The analysis of these
three figures reveals a rise in the True Positive Rate (Recall) according to the model
sequence: Decision Tree, Extra Trees, and Random Forests respectively; conversely,
there is a decline in the False Positive Rate (Fallout) across these models as well.

Additionally, we assess the significance of features in these three models. A feature
importance is determined by the cumulative reduction in both the mean and standard
deviation of impurity across each tree [5]. A substantial reduction in impurity when
employing a feature signifies a high information gain associated with that feature.
Consequently, such features play a significant role in determining the class or label of
instances. Fig. 9 illustrates a comparison of the top ten important features among
the three models. It is evident that the three most significant features in all models
are consistent: average hematocrit count, average platelet count, and the duration
between a patient’s admission and discharge. However, there is a difference in the
order of importance between platelet count and discharge duration for the Extra Trees
model compared to the other two models.

Pedregosa et al. [23] pointed out that calculating feature importance based on
impurity measures can potentially be misleading for a feature with many categorical
values. Therefore, we additionally examine which features are truly most influential for
predicting the class by utilizing Permutation Feature Importance (PFI) [9, 21]. PFI is
a model-agnostic global interpretation method for machine learning models, meaning
it can be applied to analyze any model regardless of the algorithm. The computed
values of PFI for the different features are visualized in Fig. 10.

The Permutation Feature Importance (PFI) analysis indicates that the average
hematocrit count, average sodium level, average platelet count, and the length of hos-
pital discharge duration are identified as the most important features for the models.
These top important features align with those highlighted in the feature importance
plots shown in Fig. 9. Interestingly, the binary feature race_0THERS, which indicates
whether a patient belongs to other racial groups besides the major ones, is unexpectedly
identified as an important feature for making predictions by the models.

Next, we analyze feature importance by computing the SHAP values. Specifically,
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feature dt_feat_imp et_feat_imp rf_feat_imp
num__mean_Hematocrit 4.67% 311% 3.85%
num__mean_Platelet Count 4.29% 3.02% 3.75%
num__discharge_duration 4.26% 3.05% 3.65%
num__mean_Sodium 2.92% 2.99% 3.59%
num__mean_Systolic_BP 3.14% 2.95% 3.54%
num__std_Heart_Rate 4.09% 2.83% 3.54%
num__std_Potassium 3.78% 2.83% 3.52%
num__mean_Calcium, Total 3.97% 2.87% 3.49%
num__mean_Heart_Rate 3.88% 2.86% 3.48%
num__std_Calcium, Total 3.62% 2.88% 3.47%

Figure 9: Feature importance across Decision Tree (dt_feat_imp), Extra Trees
(et_feat_imp), and Random Forests (rf_feat_imp). The greater the percentage value
of a feature, the greater the impact of the feature on determining the label of an in-
stance.

feature rf_perm_mean rf_perm_std dt_perm_mean dt_perm_std et_perm_mean et_perm_std
num__mean_Hematocrit 0.04 0.00 0.07 0.01 0.01 0.00
num__mean_Sodium 0.03 0.00 0.03 0.01 0.01 0.00
num__mean_Platelet Count 0.02 0.00 0.04 0.00 0.01 0.00
num__discharge_duration 0.02 0.00 0.03 0.00 0.01 0.00
cat__race_OTHERS 0.02 0.00 0.02 0.00 0.01 0.00
num__std_Glucose 0.01 0.00 0.02 0.00 0.00 0.00
num__std_Platelet Count 0.01 0.00 0.03 0.01 0.00 0.00
num__std_Albumin 0.01 0.00 0.00 0.00 0.01 0.00
num__std_Potassium 0.01 0.00 0.02 0.00 0.00 0.00
num__age 0.01 0.00 0.01 0.00 0.01 0.00

Figure 10: The average of feature importance and standard deviation based on
PFI across Random Forests (rf_perm_mean and rf_perm_std respectively), Deci-
sion Tree (dt_perm_mean and dt_perm_std), and Extra Trees (et_perm_mean and
et_perm_std). A higher value for a particular feature corresponds to a larger error in
the model’s predictions. Consequently, higher-value features hold greater significance
in determining the predicted output.

feature rf_shap_imp dt_shap_imp et_shap_imp
cat__race_OTHERS 0.0213 0.0403 0.0093
num__mean_Hematocrit 0.0201 0.0748 0.0112
num__mean_Sodium 0.0142 0.0298 0.0100
num__mean_Platelet Count 0.0113 0.0413 0.0124
num__discharge_duration 0.0108 0.0243 0.0105
num__age 0.0083 0.0150 0.0119
num__std_Resp_Rate 0.0081 0.0178 0.0107
num__std_Glucose 0.0075 0.0237 0.0102
num__mean_Albumin 0.0070 0.0145 0.0119
num__mean_Systolic_BP 0.0068 0.0267 0.0104

Figure 11: The SHAP values across Random Forests (rf_shap_imp), Decision Tree
(dt_shap_imp), and Extra Trees (et_shap_imp). A feature with a higher value con-
tributes more significantly to the prediction of the output.
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Figure 12: The SHAP summary plot for the Random Forest model indicates that values
of average platelet count and hematocrit which are above zero decrease the probability
of patient readmission, while a longer duration of hospital stay increases the likelihood
of readmission.

we utilize KernelSHAP for Extra Trees and TreeSHAP for both Decision Tree and Ran-
dom Forests. The SHAP feature importance plot in Fig. 11 corroborates that the aver-
age hematocrit count,
sodium level, platelet count, and discharge duration are key contributing features for
the model’s predictions. Aligning with the Permutation Feature Importance (PFI)
results in Fig. 10, the binary race_OTHERS feature is also found to influence the pre-
dictions. However, for the Extra Trees model, the SHAP values across features are
relatively balanced, suggesting that multiple features contribute almost equally to the
predictions.

The SHAP Beeswarm plot in Fig. 12 provides an overview of the SHAP values
across all features. This plot is shown specifically for the Random Forest model, as it
was determined to be the best-performing model in the experiments.

4 Conclusion

The study aims to predict patient readmission, framing it as a classification problem
using the MIMIC IV dataset. Feature extraction from the dataset resulted in 27 numer-
ical features and 7 categorical features. Several machine learning models were trained
on the training set using stratified 10-fold cross-validation. The three best-performing
models underwent hyperparameter tuning. The best model after hyperparameter tun-
ing was the Random Forest model, which achieved a balanced accuracy of 63.7% when
trained on the entire training set and tested on the test set.

Furthermore, this research delves deeper into identifying the key features that sig-
nificantly influence the prediction model’s outcomes. In addition to evaluating feature
importance through the cumulative reduction in both the mean and standard deviation
of impurity, the study employs two global model-agnostic techniques: permutation fea-
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ture importance (PFI) and SHapley Additive exPlanations (SHAP). The findings from
these three approaches were consistent, indicating that the average levels of hematocrit,
sodium, and platelets in the blood, along with the duration between patient registration
and hospital discharge, are crucial features that impact the prediction results.
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