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Abstract For the wave equation with inhomogeneity o(z)u}* + g(x)u? a forward and an
one-dimensional inverse problems are studied. Here m > 1 and p > 1 are real numbers. The
forward problem is considered in the domain z > 0,¢ > 0 with zero initial data and Dirichlet
boundary condition at z = 0. An unique solvability theorem of this problem is proved. The
inverse problem is devoted to determining the coefficients o(z) and ¢(z). As an additional
information for recovering this coefficients, two forward problems with different Dirichlet data
are considered and traces of the derivative of their solutions with respect to x are given at
x = 0 on a finite interval. For the inverse problem a local existence and uniqueness theorem
is established.
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1 Introduction

In recent years, there has been an increasing number of scientific papers devoted to
solving both forward and inverse problems for nonlinear wave equations. Equations
containing nonlinearities of the form |u[P~u are called defocusing. For example, var-
ious formulations of forward problems and methods for solving them are considered
in papers [1-6]. Thus, in the paper [1], the internal stabilization and control of the
critical nonlinear Klein-Gordon equation Ou+u+ |u|*u = g on 3-D compact manifolds
are studied. In paper [2], the authors prove the exponential stabilization of the semi-
linear wave equation Ou = ~y(x)dyu + fu + f(u), with an effective damping in a zone
satisfying a geometric control condition only. The nonlinearity is assumed to be sub-
critical, defocusing and analytic. In [3], the global behaviors of solutions to defocusing
semilinear wave equation (¢ = |¢[P~1¢ in R1*? d > 3, is investigated. For the case
p>1+4+2/(d—1), an uniform weighted energy estimate for the solution is obtained,
as well as an inverse polynomial attenuation of the energy flow through hypersurfaces
away from the light cone is found. In [4], a wave equation Ou+|u|P~'u = 0 with a power
nonlinearity is considered, defined outside the unit ball in R™, n > 3, with Dirichlet
boundary conditions. It is proved that if p > n + 3 and the initial data are nonradial
perturbations of large radial data, then there exists a global smooth solution. The so-
lution is unique in the energy class solutions satisfying an energy inequality. Paper [5]
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is devoted to the study of the asymptotic behavior of solutions to the one-dimensional
wave equation Cu + |u[P~*u = 0. It is proved that the solution with finite energy tends
to zero in the pointwise sense, moreover, for sufficiently localized data belonging to
some weighted energy space, the solution decays in time with inverse polynomial ve-
locity. In [6], the equation 0@+ |¢[P~ ¢ = 0 is studied on R x R?\ K with the Dirichlet
boundary condition. Here, K is is a star-shaped obstacle with smooth boundary. It is
proven that the solution scatters both in energy space and the critical Sobolev space.

Inverse problems for nonlinear wave equations have been studied relatively recently,
but many results have already been obtained in solving these problems. Thus, in [7-9]
various formulations of inverse problems related to the determination of the Lorentz
metric or the coefficients included in these equations are considered. In [7], nonlin-
ear inverse problems for the wave equation Oyu(z) + H(z,u(z)) are considered on a
Lorentzian manifold M with Laplacian—Beltrami operator. It is shown that, on a given
space-time (M, g), the source-to-solution map determines some coefficients of the Tay-
lor expansion of H in u. In [8], for the semilinear wave equation Oyu+w(z, u, Vyu) =0
on Lorentzian manifolds, the inverse problem of determining the background Lorentzian
metric is studied. In [9], the inverse boundary value problem is considered for a semi-
linear wave equation Cu + H(z,u(z)) = 0 on a time-dependent Lorentzian mani-

fold M, with a time-like boundary. It is assumed that H(z,z) ~ . hy(z)z", where
k=2

hi € C*°(M). The time-dependent coefficients in the nonlinear terms of the equa-
tion can be reconstructed using knowledge of the Neumann-Dirichlet mapping, which
allows for the reconstruction of the time-dependent terms. It was shown that either
distorted plane waves or Gaussian beams can be used to derive uniqueness. In [10],
the inverse problem of recovering the nonlinearity f(z, ) in the differential equation
Ou + f(x,u) = 0 is considered. It is demonstrated that it is possible to recover the
function f(z,u) when it is odd in u, and it is also possible to recover the function
a(z) when f(z,u) = a(z)u?™. In [11], the geometric non-linear inverse problem of re-
covering a Hermitian connection A from the source-to-solution map of the cubic wave
equation Oau + k|u[*>u = f, is considered. Here k # 0, (4 is the connection wave
operator in Minkowski space R'*™2. The microlocal analysis is used for this nonlinear
wave interactions. In [12], it is shown that the scattering operator for defocusing en-
ergy critical semilinear wave equations Ou + f(u) = 0, f € C®(R), f ~ w5, defines
the function f. In [13], the recovery of a potential associated with a semi-linear wave
equation Ou + au™ = 0 in R™" n > 1, is investigated, where m is integer number,
m > 2. The Holder stability estimate for the recovery of an unknown potential a(x,t)
from its Dirichlet-to-Neumann map is proved. In [14] the equation Ou + a(z)|ul*u = 0
is considered in two-dimensional and three-dimensional spaces. The inverse problems
of restoring the function a(z), 0 < «a(z) € C§° are investigated, and it is shown
that using the Radon transform, an unknown coefficient can be restored. In [15] the
inverse problem of nonlinear ultrasound imaging analysis is considered. The propa-
gation of ultrasonic waves is modeled by a quasi-linear wave equation. By making
measurements at the boundary of the medium encoded in the Dirichlet—Neumann
mapping, the nonlinearity is restored. In [16] the several inverse problems related to
nonlinear progressive waves that occur during infrasound inversions are investigated.
The nonlinear progressive equation has the quasi-linear form w; = Af(z,u), where
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flz,u) = c1(z)u+ co(x)u”™, n > 2, and can be recovered from the hyperbolic system of
conservation laws associated with the Euler equation of the original equation. Unique
identification results were obtained in determining f(x,u), as well as related source
data by measuring boundaries. The analysis of the problems is based on high-order
linearization and the construction of Gaussian ray solutions for wave equations. In [17],
for the nonlinear partial differential equation Ou = ¢(z)u?™!, where v > 0, the inverse
problem of determining the function ¢(x) from boundary data is considered. Here, it
is assumed that the desired function ¢ is a continuous and finite function for x € R3.
It is shown that solutions to the corresponding forward problem for the given differ-
ential equation are bounded in some neighborhood of the characteristic curve, and an
asymptotic expansion for the solution in this neighborhood is obtained. A theorem
on the uniqueness of solutions to the inverse problem is proved. In [18] the equation
Ou = ¢(t)ul, where m > 1 is a real number, is considered. Theorems of the exis-
tence and uniqueness of the solution of the forward problem and a local existence and
stability of the solution of the inverse problem are proved. In [19] an one-dimensional
inverse problem of determining the nonlinear coefficient for a second-order hyperbolic
equation with nonlinear absorption: Cu + o(x)|u|™u; = 0, is studied, here m > 0 is
a real number. For the inverse problem, a local existence and uniqueness theorem and
a global stability estimate of its solutions are stated. In paper [20] a hyperbolic equa-
tion with variable leading part and nonlinearity in the lower order term is considered.
The coefficients of the equation are smooth functions constant beyond some compact
domain in the three-dimensional space. A plane wave with direction ¢ falls to the het-
erogeneity from the exterior of this domain. A solution to the corresponding Cauchy
problem for the original equation is measured at boundary points of the domain for
a time interval including the moment of arrival of the wave at these points. The unit
vector { is assumed to be a parameter of the problem and can run through all possible
values sequentially. The inverse problem of determining the coefficient of the nonlin-
earity on using this information about solutions is studied. The structure of a solution
to the direct problem and demonstrate that the inverse problem reduces to an integral
geometry problem is described. The latter problem consists of constructing the desired
function on using given integrals of the product of this function and a weight function.
The integrals are taken along the geodesic lines of the Riemannian metric associated
with the leading part of the differential equation. This new problem is analyzed and
some estimate of the stability of its solution is found, which gives an estimate of the
stability of solutions to the inverse problem.

In the present paper we consider an one-dimensional inverse problem for equation
Ou — o(x)uf* — g(x)u? = 0 on semi-axis > 0 with zero initial data and the boundary
condition u(0,t) = f(t), m > 1, p > 1 are a real number. The main goal is to recover
coefficients o(z), ¢(z) from the derivative u,(0,t) given for ¢t € [0,7]. We prove an
uniqueness and existence theorem for the forward problem when the function f(#) is
given. Then we study the inverse problem and state a local uniqueness and existence
theorem for this problem. Both theorems for forward and inverse problems are new in
the theory of inverse problems.
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2 Posing of problems

Let T be a real positive number.
A forward problem. Determine the function u(x,t) satisfying the relations

Ut — Upy — o () — q(z)u? =0, x>0, te(0,T]; (1)

Uli=o = Us|i=0 = 0, (2)

Ulo=o = f(t), (3)

where o(x) and ¢(z) are continuous functions; m > 1 and p > 1 are real numbers; f(¢)
is the twice continuously differentiable function and f(0) =a >0, f'(0) =b > 0; a, b

are some constants.

An inverse problem. Let fi(t), k = 1,2, be the given functions and f;(0) = a; >

0, f1(0) = by > 0, k = 1,2, numbers a; and by, satisfy the condition ajby" — abby* > 0.

The solution of the forward problem (1)-(3) for f = fix, k = 1,2, denote ug(x,t),

k =1,2. Find the functions o(x) and ¢(z) from the given information about solutions
ug(x,t):

(Uk)z|z=0 = hi(t), t€[0,T], k=12 (4)

3 An analysis of the forward problem

The solution of the problem (1)—(3) can be written as

THt—T
ule.t) = f(t @) / i [ ©uen a6
|z—t+7|
Since u = 0 for ¢ < z, equation (5) takes the form
u(z,t) = f(t — o) // uy (&, 7) + q(EuP (€, 7)] dédr, (6)
D1 (z,t)

where the domain D;(z,t) is a rectangle bounded by the characteristics
E+T=t+z, E+T7=t—2, E—T=0—-t E—7=0

Let G(T) ={(z,t) |0 <z <t <T —z} and (x,t) € G(T). Rewrite equation (4)
as a sum of repeated integrals

t—x+¢
u(z,t) = f(t —x) / d¢ / Hu (&, 1) + q(QuP (&, 7)] dr
t—x—&
t—x+§
o / & [ o) + i) dar
(t—2)/2 3

(z+1)/2  t+z—¢

v [ & [ owen aoven]an @

2
x 3
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Differentiating (7), we find

x

wle,t) = Pt =2)+ 5 [l (€t -2+ + (€t - o+ O] de

0
(z+t)/2
1

s / (G (& +t — &) + g(Ou(&,x+t — )] dE

x

(t—2)/2
[o(§)u"(§,t —x — &) + q(§)uP(§,t —x —E)]dE. (8)

N —

Definition 3.1. Let’s say that (o(z),q(x)) € So(ko) if o € C[0,7/2], ¢ € C[0,T/2]
and they satisfy the conditions

max{|o(z)|, [¢(z)[} < ko, = €10,T/2], (9)
with a constant kg > 0.

Lemma 3.1. Let pip = min{a, b} < 2/3, v = min{m, p}, (o(x),q(x)) € So(ko) and
the inequalities
0<(l<f(t)<F1§]_—/L0/2, 0<b<f,<t><F1§1—,U/0/2,

. . (10)
1= (y=DF" W > (1 - po/2)

are fulfilled. Here w = w(ko, T) = komax{3,T/2}. Then there is a unique continuous
solution in G(T) of equations (7) and (8) and the folloring estimates hold

F
0< /2 <ulx,t) < — < 1,
[1— (v = 1) Fy ] /O
r (11)
0 < pto/2 < ug(z,t) < . <1, (z,t) € G(T).

[1 . ('7 . 1>F1'yflwﬂ 1/(7_1) =

Remark 3.1. For any fixed m > 1, p > 1, kg and T > 0, one can always choose
the function f(¢) and the numbers a and b such that F; be much less than 1 and
second condition (10) be fulfilled. If the numbers a and b are fixed, this condition is a
smallness condition for 1" or k.

Proof. Let’s change the integration variable £ by 7 in (8). Then this equation will be
written as

t

ut(x,t):f’(t—xﬂ—%/ [o(z—t+7)ul(z—t+7,7)+qle—t+T)WP(x—t+7,7)] dr

t—x
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t

1

+§ / o(@+t—7)ul(x+t—7,7)+qz+t—T)uP(x+t—7,7)] dr
(z+t)/2

1 t—x

—5 [ s nurt-s-nn 4 et - o -t -o-no]dn (12
(t—x)/2

Assuming the continuity of the functions u(x,t) and u,(z,t) (that will be proved later),
introduce the new function

max { max ]u(z,t)],gggé |ut(x,t)|}, te0,7/2],
z(t) = (13)

max { [Jnax lu(z, t)] [Jnax lug(, t)|}, te[T/2,T].
It follows from equations (6) and (12) and conditions (11) that z(t) < 1, at least for ¢
sufficiently close to zero ( in fact it is right for all ¢ € [0,77]). Using this argument, we
replace z™ and 2P in the estimates below with 27, v = min(m, p). Then the following

inequalities follow from (6) and (12):

t t
T
ute, 0] < B+ 8 [ Ay dr, e 0] < B+ 350/27(7) dr.
0 0
Therefore,
t
2(t) < Fy + ou/z”(T) dr, w = komax(3,7/2). (14)

0

Let’s denote
t

2 (t) = F +w/z“’(7) dr. (15)

[e=]

By virtue of (14), (15) we have

Integrating the resulting inequality, we find that
2 ()= B+ (1= y)wt,

or

-1 -1 y—1
A7) < = a < h T < < . ) <1,
[FI77+ (1 —y)wt] 1= (y—DF " wT] ~ \1— po/2

te[0,7]. (16)
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Here final inequalities follow from conditions (10). Hence,

Fy

(1) < z1(t) < 1= (y=1)F" 1 wt]/0-1)

<1, te[0,T]. (17)

On the other hand, by virtue of (17), it follows from equations (6), (12) that

t

min{u(z,t), w(z,t)} > po —w/z"*(T) dr

[
>y — w — dr
1—(y—1)F]  wr/0-D

0

B[ dl—(y— 1) ]
[

= 1o +
HTE=D ) = (= DE /6D
0
F —(y—1 !
= Ho + : b 7—1) /(-1
(v—1) [1—(v—1)F wr]/0=D],

1
— g — F 1
Ho 1{[1 (= ) E /6D 1

Ho 2 Ho
Zpo— |1 ——= —-1)=—. (18
" < 2>(2_M0 ) 2 (18)

The estimate (11) follows from (17), (18).

Let us now prove that under the condition (10) there exists a continuous in G(7T')
solution of the equations (7) and (12). Denote v(x,t) := u;(z,t) and define successive
approximations, assuming that

U()(I,t) :f(t—l‘), Uo(x,t):f/(t—$),

(1) = f(t — ) / / o (6 ) + g€l (€,7)] dédr,

Dl(xt

vn(x,t):f’(t—x)—l—%/[ (x—t4+7)0" ((r—t+7,7)+q(x—t+7)ud_(z—t+T, 7')} dr

t—x
¢
1
- 9 / loc+t—T)o (z+t—7,7)+qle+t—T)ub_(x+t—7,7)]dr
(z+t)/2
t—x
b [(t—x—r) (t—x—7,7)+q(t —x —7)ul_ (t—:L'—T,T)]dT,
(t—x)/2

n=12..., (x,t)eGT). (19)
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Let’s check that for (x,t) € G(T') the inequalities are valid

/2 < un(z,t) < l <1
Ho X Un\T, X —1)
. (20)
1
to/2 < vg(z,t) < — <1, n=0,1,....
[1 . (7 . 1)F17—1wt] 1/(v=1)

It is convenient to use designations like (13) for this:
- max{ggjz{ |un(z, )], , lax v (z, t)|} te]0,7/2],

mw{&gg|%@tmégxhﬂxﬂ& teT/2,T), n=0,1,2,....

For n = 0 inequalities
By
,LL()/2 < Zo(t) < F1 < € [O,T], (21)

<1,
[1—(y = 1)F " wr] /O

follow from (10) and the condition v > 1.
Using the method of mathematical induction, assume that for all 1 < n < k the
inequalities hold

F
L <1, telo,T].

to/2 < zp(x,t) < —~ ,
N = (= D E ] O

Then
/ Fld
-
< 2
2k+1($,t)\F1+w/zk(T < B +w/ (- - % ]7/(7_1)
0 0
<K+ 5 — — 1
[1 (- 1)Ff*1wt] 1/(v-1) ]
F
= — ooy SLote[0T]. (22)
[1—(y—1)F wt]
On the other hand,
t t F’Y
Zpp1(,t) = po—w | Z(7)dr > —w/ L dr
e @1) > o / K> 0= | e

1
= o — F —1
" l{u—(v—l)wlwtrﬂmw }
1o -4):%,temﬂ.@$

A~
—_
|
| F
~— "
A~
rO
I o
=
(=]
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By virtue of the method of mathematical induction, the validity of inequalities (20)
follows from (21)—(23).

Consider the differences

Up(z,t) = up(z,t) — up_1(x,t), Ty(z,t) = vo(z,t) —vpq(x,t), n=12,...

I

and define

o max{ggax ()], max ]m(a:,t)]}, te0,7/2),
Za(t) =
max{ max |u,(z,t)] max |v,(z, t)|} te[T/2,T], n=1,2,....

0<z<T—t 0<e<T -t

From (19) we have

// vy (&, 7) + q(&)u (€, )] dédr,

D1 :L‘t

@ﬂx,t)-%/ o —t+7m)of(z—t+7,7)+qlz—t+7)uf(z —t+7,7)]dr

t—x
¢
1
+3 / o +t—T)of(x+t—7,7)+qlz+t—T)ub(z+t—7,7)]dr
(z-+t)/2
t—x
1
-5 / [a(t —x =Tl (t—x—71,7)+q(t —x —T)ub(t — x — 7',7')} dr, (24)
(t—x)/2

tua(wt) = 5 [ [ {oO €D — a6 1] +a(©luner) — o 1(6 7))} e

Dlxt

Upa1(z,t) = % / {U(x —t+7) [U,"f(:r; —t+7,7)—u(x—t —i—T,T)]

t—x

+q<$—t+7>[ulﬁ($—t+7’,7’)—uﬁfl(x—t—l-T,T)]}dT

+% / {cr(:p—kt—T)[v:?(xﬁLt—TaT)_UqT—l(ijt_T?Tﬂ

(z+1)/2

+qz+t—7)[ul(x+t—7,7) —ufl_l(x—l—t—T,T)]}dT
— % / {O’(t—l’—’/’)[vzl(t—l’—ﬂ’r) — o (t—x—7,7)]
(t—x)/2
+q(t—x —T)[uﬁ(t—:c —T,T) —uﬁfl(t—x—T,Tﬂ}dT,
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n=12,..., (zt)€G(T). (25
From the equalities (24) we find the estimates
¢ ¢
[ty (z,t)] < % dr = %t, U1 (2, )| < 3/@0/d7' = 3Kot.
0 0
Therefore,
71(t) < wi. (26)
Let’s imagine the difference u? (&, 7) —ub (&, 7) as:
un(§,7)
wEn) -~ =p [ =) Kl w67, (2D
un—1(£7)
where )
Kol (67 = [lstn(67) + (1= (€7 s (28)

0
Then in full force (20), (27), (28) inequalities

0O K mltn v €D Smry. n=12.., gnecm),
are true.
Denote v; = max{m, p}. Then, using inequalities (29), we find that
t
(o, 1)] < 2T / z(7) dr.
0
t
B (2, 8)] < 3071 / s (r)dr, (x,1) € G(T).
0
Hence,
t
Zni(t) <wm /ZAT) dr, tel0,T]. (30)
0
Inequalities (26), (30) are followed by easily verifiable estimates
2.(1) < (w%)"l‘”n—fl < (w%)nlwsn, n=1.2,..., tel0, 7.  (31)

It follows from estimate (31) that the sequences of continuous functions w,(z,t) and
vp (2, t) converge uniformly in the domain G(7') and determine the continuous solution
of the equations (6) and (8). Inequalities (11) are fulfilled for this solution. The
uniqueness of the solution is established by the standard method.

Lemma 3.1 is proved. O
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Differentiating (7) with respect to x, we obtain

T

wet) ==t —a) = 5 [ [©ur(€.t =246 + g (6t — o+ )] dg
| G i
+3 [ POwEt-o-9+dOwiet-o -] de
X (z+t)/2
vy [ oot r e t-g)ds (2

x

Since the expressions on the right hand side of equality (32) are continuous functions,
then the expression on the left hand side is also a continuous function in the domain
G(T). Thus, the function u, € C(G(T)).

Lemma 3.2. Under the assumptions of Lemma 3.1, the function u, € C(G(T)) and
the following relations take place:

ug(0,0) = = f'(0) = —b, (33)

F
— o ey s b @) ed(D),

ua(0,8) + f'(t) = —po/2, f'(t) = ux(0,1) 2 3po/2, ¢ €[0,T],

Ho/2 < —uy(3,1) <

£t + / s (0,7) dr > po/2,
" (35)

£(#) —/um(O,T) dr > 0/2, t€[0,T].

Proof. The first relation (33) follows directly from equation (32) for x =t = 0, Further,
inequalities follow from equation (32)

t t

— Uy (z,t < Fy +w/z”(7)dT<F1+w/
0

Fy
[1—(y— 1)F1771w7'] A
F

- _ S 17 (:Eut) S G<T)a
|:1 . (7 i 1)F1’yflwt] 1/(v=1)

dr

t

lug(z,t) + f'(t —2)] < W/Z’Y(T) dr < /2, (z,t) € G(T),
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Therefore
_u$(7t) = f,(t - :L‘) - [u:v(x7t) + f/(t - l‘)] > M0/27
ug(0,8) + f'(t) = —p0/2,
I (1) = ug(0,8) = po + po/2 = 3p0/2,  (x,t) € G(T).

The relations (34) follow from the above inequalities.
Calculating the integral on the left side of the first relation (35), we find

t

/[uw(O )+ (7

0

t T/2

/ / (g r—€) + g(OuP(E, T — )] de dr

t

< w/z'y(T) dr < /2, te0,T].

[e=]

From here

ﬂﬂ+/%®ﬁMTzﬂ®+/@A&ﬂ+fﬁWh>ﬂm—mﬂ>udl

fm—/%mﬂwzw@—ﬂm ﬂwmﬂ+ﬂﬂ

> 2f(t) = f(0) = po/2 = po/2, t€[0,T].

Inequalities follow from these relations (35). Lemma 3.2 is proved. [

Differentiating equality (8) with respect to ¢ and and taking into account that
u(z,z) = f(0) = a, we obtain

1 fx+t\ (x+t x+1 1 (t—x2\ ,(t—x t—2
utt(fat):f”(t—:v)ﬁ"( 2 )“t (T 2 )_10( 2 )ut <T 2 )
+ap T+t a? (t—x
1\ 72 11\ 72

+% / [ma(§)uy ™ (€ t—w+un(é t—r+&) +pg( u™ (&t —w+E)un(é, t—x+)] d¢

+ / [mo(uy (& a+t=E)un (&, a+t—E)+pa(©)u’ ™ (& a4t —E)uy(€, w+t—E)] d

-5 / [mo(€)uy ™ (€, t—1—E)un (€, t—1—E)+pg(€)ur ™ (€, t—1—E)uy(€, t—2—€)] dE,

(x,t) € G(T). (36)
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Lemma 3.3. Let the conditions of Lemma 1 be fulfilled and let f € C?[0,T]. Then
there is a unique continuous in G(T') solution of the equation (36) and the following
estimate holds

|utt(x7t)| < K7 (ZE,t) S G(T), (37)
where constant K depends on || f"||co), T ko, m, p and a.

Proof. Replace the integration variable £ in (36) with 7. Then we get the equation
1 fx+1 r+t x4+t 1 (t—= t—z t—x
£ — " t— - m - m
=i b3 (54 550) (5o (5515
_l_ap T+t a? (t—x
11\ 2 11\ 2
1

+§/ [mo(z —t+ 7w (z —t+ 7, T)uy(z — t +7,7)

t—x
+pg(r —t+7)uP N —t+ 7, 7w — t + 7, 7')] dr
t

t

1
+§ / [mo(z+t— T (z+t—7,7)uy(z+t—7,7)

(z+t)/2
+pg(r+t—7T)uP N+t — 7, 7w+t — T, T)] dr
t—x

1
~ 3 / [mo(t —a —T)u) 't — 2 — 7, 7)uu(t — x — 7,7)
(t—z)/2

+pqt —x — )Wt — 2 — 7, Tu(t —x — T, 7')} dr. (38)

Equation (38) for found functions u(x,t), ui(x,t), (z,t) € G(T), is the Volterra integral
equation for the variable t relative to u(x,t). The kernel of this equation and the free
term are continuous in G(7"). Therefore, there exists a single continuous solution to this
equation. Therefore, equation (36) defines u(z,t) as a continuous function in G(T').
Hence, the evaluation (37). Lemma 3.3 is proved. [

Differentiating equality (8) with respect to x, we obtain
1 [fx+1t r+t x+t 1 [t—=x t—x t—=x
iy - m - m
. a_p T+ n a_p t—=x
£\ 11\
~5 [ Ino©ur (€t (€, b= +€) +pal@wr (€ - a4 eyt -] de

0
(z+t)/2

s [ no©ur - uale a6 +pal 6wt ue a 6] d

x
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(t=2)/2
+% / [mo(&)ui* (&, t—x—E)uu (&, t——E&)+pg(EuP~ (&, t—r—E)uy(§, t—x—E)] dE,
(z,t) € G(T). (39)

Since the expressions on the right hand side of equality (39) are continuous functions,
then the expression on the left hand side is also a continuous function in the domain
G(T). The continuity of the function u,,(z,t) in the domain G(T') follows from equa-
tion(1) and the above-proven continuity of the functions u(x,t), u;(z,t) and uy(z,t).

From Lemmas 3.1, 3.2, 3.3 and the above-established continuity of derivatives
Uzt (z, 1) and ug,(x,t) follows

Theorem 3.1. Forward problem (1)—~(3) has unique solution and it is a function of
the class C*(G(T)).

We present some corollaries from Lemma 3.2 and Theorem 3.1, those are useful for
studying the inverse problem. Let’s denote h(t) = u,(0,1).

Corollary 3.1. From the fact that the function u(z,t) belongs to the space C*(G(T))
it follows that the function h(t) € C*[0,T], and from the relations (33)—(35) it follows
that h(t) has the following properties:

MO = —F(0) = —b (O +h(0) > /2 F(6) — ht) > Bpof2.
f(t) + /h(T) dr > po/2, f(t) — /h(T) dr > po/2, te€][0,T]. (40)

0 0

Corollory 3.2. From (39) for z = 0 the equality follows

(1) = = F"(0) + 5o t/2) wt/2,4/2))" + a(t/2)5
t/2
+ / [mo(ui" (6t — Huu(&,t — &) +pa(Qu™ (&t — Ou(S,t — )] dg. (41)

0

We use an analogue of this equality in the next section.

An investigation of the inverse problem

Inverse problem. Let T be a given positive number, fi(t), k = 1, 2— given functions
for t € [0,7T] such that f,(0) = ar > 0, f.(0) = by > 0, and the numbers a; and by
satisfy the condition

D = alby' — abb > 0. (42)

Let, in addition, from solutions of w(x,t), k = 1,2, of forward problem (1)—(3) for
f = fr, k=1,2,, the functions hy(t) defined by formula (4) are given. In the inverse
problem, it is required to find functions o(x) and ¢(x) from the given information.
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Denote p = min{ay, by, as, by }.

Definition 4.1. Let’s say that (fy(t),h(t)) € F(F,H,p) if fr, € C?[0,T), hi €
C'[0,T] and satisfy the conditions

hi(0) = =f3(0) = =be, K =1,2, (43)

and
| fellezor < E, | hlleron < H, k=1,2, (44)

Se@) + hi(t) 2 —p/2, fi(t) = hi(t) = 3p/2,

t

(45)

fi(?) +/hk(7) dr > p/2,  fu(t) — [ hi(r)dT > p/2, t€][0,T].
ugakgfk(t), k:1,2, (46)
p<by < fi(t), k=12 tel0,T], (47)

where F, H — some given numbers.

Remark 4.1. Inequalities (45) are analogous of inequalities (40), which are obtained
under the conditions of the lemma 3.1. Here they are simply postulated. The analysis
of the forward problem shows that they are acceptable.

Theorem 4.2. Let fi(t),hp(t) € F(F,H,u). Then there exits a positive number
To < T and a single pair of functions o € C|0,Ty/2], ¢ € C[0,Tv/2], such that the
solutions of problem (1)—(3) for f = fx(t), k = 1,2, satisfy the condition (4) for
t € [0,Tp).

Proof. The solution of problem (1)—(3) for f = fi, k = 1,2, denote uy(z,t). Let’s use
equality (41) and set in it h = hy, f = fx, u = ug, uy = vy, uy = wg. In addition, we
set t = 2x. Then we get two equalities

b (22) + F1(20)] = o (@) + glw)a? + o) [ (x, 2))™ — 7]
+2/Tma@w?*@ﬂx—swm@2x—o

+pg(E)ul (€, 20 — E)up(€,20 — €)] dE, 2 €[0,T/2], k=12

From these equalities we find that

o(x) = og(x) + %{ (ag [v’ln(a:, x) — b’ln] —al [v;"(x,x) — b?])a(x)

+ 200’2’/ [ma(€)of" (&, 22 — Ewi (€, 22 — €) + pg(€)uy ™ (€, 22 — v (€, 22 — §)] dE
0
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T

~ 20t [ [mo€)u (6,20 - un(€, 20 - ¢

0

+pg(€)uh (€, 22 — E)va(€, 22 — €)] dﬁ}, (48)

1

a(2) = qol) + 5{ (=0 [0, 2) = 67 + 0 o, 2) = B3] o ()

xT

+ 205 /[ma(f)v’f‘_l(fa 2 — E)wi (&, 22 — &) + pg(§)uf (€, 22 — E)ui(€, 22 — )] d¢

0
T

+ 207" /[ma(f)vg‘l(f, 2z — wq(§, 22 — &)

0

+pg(E)ub™H (€, 20 — E)ua(€, 22 — )] dﬁ}, (49)
where

o0(x) = {20 [ (20) + f{(20)] — 205[R(20) + f1(20)] ),

) (50)
iole) = {27 [Rh(22) + f(2)] — 265 (B} (22) + f1(20)] )

t)
),

Let’s write out alternative equations for the functions ug(z,t), vg(z,t) and wg(z,
for k = 1,2. To do this, we apply the D’Alembert formula to problem (1), (3), (
where we set f = fi, h=hg, k=1,2,

()i = (un)ow + 0(2)(ur)" + q(x)ug =0, x>0, te(0,T],

whoo = A0, (w)olomo = ult), ¢ € [0.7] o
As a result, we get the equation
x wtt—€
wet) =uon(e.t) 5 [ [ @ n) +a©uie ] drds,  (52)
0 t—a+é
in which .
uon (1) = P2 er filt =) | % / hi(7) dr. (53)

Differentiate (52) with respect to t. Then we get the relations
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1

nlant) = von(o0) = 5 [ [0 (€t 42— &)+ gl t 42— )]

0

~ [ et — o+ &) + a6t — v+ )] | g, (54)

T

wi(z,t) = wor(x, t) — %/ [[ma(f)v,’f*l(é, t+x—&uwp(§,t+x—¢§)

0
+pg(Oul (&t + 1 — Eup(E,t +a — €)]
— [mo (v (&t — 4+ Hwp(é, t — 2+ €)

T pa(§)u (6t =z + o6t~z +€)]| de, (55)

where
! !/ _ _ _
vor (1. ) 8;;% (2.) = fi(t + ) %2— fi(t —x) N hi(t + ) . hi(t a:), -
26
D*uok Yt+x)+ fl(t—x) A (t+x)—h(t —x)
Conditions (45) ensure that
uor(@,t) = p/2,  wvor(z,t) = p/2, (z,t) € G(T). (57)

Therefore, the solutions of equations (52), (54) will remain positive in the region G(7),
at least for sufficiently small values of T', which ones, we will find below.
Let’s write down equations (48), (49), (52), (54), (55) in the operator form

g=Ag, (58)
where
g = (U(m)ac.Z(m)’u1<$’t)?u2<x>t)7vl(x>t) ( ) wl( ) w2($ t))?
gl(x,t) = (ao(x),qo(:v),um(a:,t),uog(x,t),vm(a: t), voe(z,t), woi(x, 1), wog(x,t)).

Functions oo(z), qo(z), uo1(,t), uoz(z,t), vor(z,1), voz(z,t), woi(z,t), wea(z,t) are
defined by the equalities (50), (53), (56). Operators A (g), A;(g), A3+k( ), Ask(8),
Asi1(g), k = 1,2, they are defined as follows:

Ai(g) = oo(a) + %{ (et [or (. 2) = b7 = o3 (2 2) = 5] ) o)

4205 [ [ma(€r (6,20 — un 6,20 - ©) + pal©)ud (€20 — Ol 20— )] dg
0

T

— Qaﬁ’/ [ma(f)v;"_l(ﬁ, 20 — wy(§, 22 — §)

0
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+ pa()uh (€ 20— E)u(€, 20— €)] df}, (59)

A(g) = o) + —{ (=05 [0 () — 0] + 67 [o5 (2, 2) — B3] D) ()

— 2 [ [mo@up 620 - Oun(€. 20 = ) + pal€d (6,20 — un(€20 - )] de

0
T

b / (o€ 16,20 — ua(€, 20— €)

0

+ pa(©)ug (€, 20 — E)ualé, 20— €)] df}, (60)

z z+t—=¢

Rossl) = vnlest) =5 [ [ [©u(€.m) + a6 n] drde, k=12, (61
0 t—x+¢&

Aisal) = vun(et) — 5 [ [[oO (6842 - &)+ g ufl6t 40— )]

0

— [t — o+ +a©ullet —a+ 9] ds, k=12, (62

Asir(g) = wor(z,t) — %/ [[ma(é‘)v?‘l(é}t Tz —Qup(&t+x—¢)

0

+ pQ<§>uZ_1(£7 l+x— f)vk(é, t+x— 5)} - [ma(g)vltzn_l(gv l—x+ §>wk(§7 t—z+ 5)
+ (€t -+ ui,t—a+©)]| de, k=12 (63)

Operators EZM and 21\4% are defined on functions (uy(x,t), vg(z,t)), k = 1,2, operators
Agy are defined on functions (ug(z,t), vg(x,t), wi(x,t)), k =1,2.

Let’s denote C(G(T')) the space of continuous vector functions with norm

lgllceery) = max {||lo|lcor/2: ldlcor, luleeay, |vlleem. lwellecay }-

Since g € C(G(T)), then all vector functions defined in (59)—(63) are elements of
C(G(T)), and from (50), (53), (56) it follows
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18° | c(ary =max {||oollco,r/2): Nlaollcpaszs [uoklle@ay, vorlle@ay: lworllc@ery }
< max{48°(F + H)/D, F+ HT/2, F+ H} = M. (64)

Here
B = max{ay, by, as, by} (65)

Consider in the Banach space C(G(T)) the closed set

M(T, M, i) = {g € C(G(T)) | ”J - OOHC[O,T/Q] < M,

‘q - QOHC[O,T/Q] <M,

- UOkHC(G(T)) s M, ”wk - kaHC(G 1) M}=

”uk - UOkHC(G(T)) sM

Following estimates hold on this set

HUHC[O,T/2} < 2M, HQHC[O,T/z] < 2M,
lurllc@ry < 2M,  |vellc@m)) < 2M,  |wllc@ary) <2M, k=12

From equalities (59)—(63) we have
Ai(g) — oolx) = 5{ (7 (@, ) = b7') = b o', ) = 0] ) o (2)

+%§/%w@ﬂ?*@ﬂx—@w@ﬂx—@+m«®%*@ﬂx—@m@2x—@h%

0
T

— 208 [ [mo€)u (6,20 — (€, 20— ¢

0

+pg(€)uh (€, 22 — )ua(€, 20 — €)] d&}, (68)

-~

Ax(g) — (@) = %{ (=63 (o1 (,) = 7] + b7 [05' (@, 2) = B3] ) o ()

2y / (€20 — E)un(€. 20 — €) + pa(€)ud (€, 20 — E)un(€, 20 — €)] de
0

T

P / [mo (€)= (€, 2 — E)ws (&, 22 — €)

0

+pg(€)uh (&, 22 — )ua(€, 20 — €] d&}, (69)



154 Romanov V.G., Bugueva T.V.

z x+t—¢

Rousl) ~un(et) = [ [ [©u(€.n) + a©uble M) drde, k=12, (70

0 t—z+&

Auselg) =~ vl t) = =5 [ (o€ (€.t +2 - ) + q©ullét 4~ €]

N | =

— @t —r+ O +a@u(Et —a+ )]s k=12, (T)

A\6+k( ) — wo(x, )

[\')IH

/[ et +a— Ewn(Et+a—8)

+pa( € (6t + o = OulEt+2— )] = [mo(@f T (gt — 2+ (gt — 3 +6)
(O €t -+ Qui,t —a+©)]| de, k=12 (72)

Let ¢ € C(G(T)), k = 1,2. Consider the difference of the functions ¢7"(z,t) —
o5 (x,t), m > 1, and represent it as follows:

w2 (x,t)
wﬁxﬂ<@@ﬂ=m /§“Wﬁ%%@ﬁ—%@ﬁﬂ%Mwﬂﬁm (73)

Y1 (Izt)
where

1

Rm[goh @2](:5, t) = m/ [gpl(x, t)s’ + @2(1:715)(1 — S')} m—

1

ds’

< m(x&&g{n{%(m 1), pa(x, 1)} (74)

Using (73) (74), the difference v}*(z, z) — b} can be written as follows:
v (2, @) = 0 = (op(@, ) — i) R [vg, bi) (),

m—1

R [vg, bel(x) = m/ [vg(, z)s" + b (1 — )] ds’, (75)

0
| Ron [k, bi] ()] < m(2M)™ ! =: R

Let’s put ¢t = z in formula (8), Then we get the equality

ez = O+ 5 [ [0 (€6 + aud€.O] 6. k=12 (10
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From here we find

n(,z) = bl < 5 [ 1oOR€.8) + al€r €. g
< [@M)™ 4+ 2M)PTT/4 = CT, k=1,2. (77)

Considering (75), (77), from equations (68)—(72) we find estimates

Av(g) — ool()] < %{ (alvr (e, 2) = 07| + @t o (2, 2) = 65'])lo ()]

+ 2al / Imo (v (€, 22 — i (€, 22 — &) + pa(ul ' (€, 22 — &) (€, 22 — €)] d€

+ 2a} / ‘ma L, 22 — Owa(€, 22 — &) + pg(E)ul (&, 20 — E)vy(&, 22 — } dé

23Pp
< %(R;C’o +2m(2M)™ 4+ 2p(2M)PH) T =: O T,

As(g) — aol)] < %{ (oG ) = B2+ 7o', 2) = ] ()

+ Qbm/ |ma f 2 — wy (&, 2z — &) +pq(§)u€_1(§, 21 — &)vy (€, 2 — | d¢

+2b71”/|m0 E)vg (€, 2 — Ewa (€, 20 — &) + pg(§)uh (&, 22 — Eua(€, 20 — € |d£}

0

2 m
f) (R, Co 4 2m(2M)™ ! + 2p(2M )P T =: CoT,

r x+t—¢€

Aassle) ~ w0 <5 [ [ o€ + (e, )] drd

0 t—ax+€&
2

T
< [(2M)™ ! + (2M)p+1]Z = C3T?, k=1,2,

xT

[llo@ret+2 -0 +a@uitet+o-o)

0

oo (6t —x + &) + g€l —x + )] de

N —

| Agr(g) — vor(x,1)] <
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< [@M)™ 4+ (2M)p+1]g = C,T, k=12,
—~ 1
| Ag1(g) — wor(z, 1) 5/ }ma et - Ouwp(é it +a —€)
0
+pg()uy (&t + 2 = urlE t + 2 — )| + [mo(Qvp (€t — z+ Hwi(é, t —x + )

a6t~ w + Ol t — 2 +6)|] de
T
< [m(2M)™ T 4+ p(2M)PH] 5= CsT, k=1,2.
Using the inequality (57), we obtain

up(z,t) = uop(w, ) + [up(z,t) — uor(z, )] = p/2 — C3T? > /4,
vk(2,t) = vor(2, t) + [ve(z, t) — vou(z,8)] = p/2 = C4T 2 p/4, k=12,

for
T < min {/p/(4C3), 1/ (4C4) }.

Let’s select Tf) from the condition

Tj = min {T, V i/ (4C3), 1/ (4Cy), M/ C, M/Cz,M/C%}-

Then the inequalities ug(x,t) > p/4, ve(z,t) = p/4, (z,t) € G(T}), k = 1,2, and
inequalities (66) are satisfied. It follows from here that the operator A(g) maps the

set M(T§, M, p1) into yourself. Below we will assume that 7" < T7.
Let us now demonstrate that the operator A, defined by equalities (59)-(63), is

compressive for a sufficiently small 7" < T§.
Let g* € C(G(T)), k = 1,2,

g = (0'(2), ¢' (), ui(z, 1), uy(z,t), vy (2, 1), va (@, 1), wy (2, 1), wy(, 1)),
g’ = (

o
(), ¢* (), ui(x,t),us(z, 1), vi(x, ), v5(x, 1), w:(z, 1), ws(z, t)),

01" (,t) — 05" (2, 1) | < [Rpnlvr, v2] (. 8)[[T(, 1)),
|u11”(x,t) - ug(x,t)| < |Rp[u1,UQ](LE,t)Hﬂ(SC,t)‘, (78)
R, =m(@2M)™', Ry =p(2M)"!

Let’s use equality (59) and write down the difference
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{@ﬁw@ww“wﬁ@mwywﬂ@@wWﬂw@@@WDmm
+ (@[3, )" = b] = a [, 2))" = 7] ) ()

T

+2a§/ [mﬁ({')(v%(f,2$—§))m 1”%(5 2z — &)

+mo?(€) [(vi(&,20 — €)™ — (vi(€.22 — &))" Jwi(€, 22 — )
+mo?(€) (v3(€,22 — €)™ W (€, 20 — €) + pg(€) (u} (€, 20 — €))7 vl (€, 20 — €)
+pa(€) [(ul(€, 20 — €))7 — (ud(€. 20— €))"Jui (€. 20 — €)
+ et (€) (u3(€, 20 — €)' T (&, 20 — &)

m—1

x

—2af [ [mo©)(uh(e 20— )" whte.20 - )

+mo?(€)[(va(€, 20 — €)™ — (v3(€, 20 — €)
+mo?(€) (v3(€, 22 — €))"Wa(€, 20 — €) + pa(€) (ub(€, 20 — €))7 Wh (€, 22 — €)
+pg?(©) [ (ub(€, 20 — €))7 — (W3(€. 22 — €)' Jvl(€, 22 — €)

+pq2(§) (ug(& 2z — 5))12_162(57 2z — 5)} }7 (79)

)" Jws €, 20 - €)
£,2

]

Similarly, from formula (60) we find
22(8;1) - /A12(g2)
— %{ <—b£”[(vi(x,x))m = (v%(a:,x)) } + bm[(vl(a: x)) — (v%(a:,x))m})al(x)

(=0 [(od )" = 0] + 07 [ (v, 2) " — 1] Jor(a)

xT

—%?/{mﬂ@@ﬂ&thnmzﬁ@2$_Q

0

+mo*(©)[(v](€ 20 — )" = (1,20 = )" Jwl(€, 20— ©)
+mw%®@ﬂam»f»m%m@zx—o+p<xwgzx—af”ﬁ@@x—a}
+p?(©)[(ul(€, 20 — )" — (Wd(€, 22 — )" Jvl (€, 20 — €)
+ et (&) (uH(€, 20 — €)' Tu(E, 20 — )] | de

v [ o) (e 20 - )"kt 20— )

0
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+mo?(€)[(v3(€,22 — €)™ — (VE(€, 20 — E)v)™ Hwi (€, 22 — €)
+mo?(€) (V3(E, 20 — €))" Wa(€, 20 — €) + pq(€) (ub(€, 20 — €))7 vd(€, 22 — €)
+pg?(€) [ (ub(€, 20 — €))7 — (ud(€, 22 — €))7 Jvl(€, 22 — €)

+ pqz(f) (U%(f, 2r — £)>P*1@2(€7 2r — 5)] d§}7 (80)

Let’s use the equations (67), (76), (78) and let’s estimate the difference

T

oh(a,) = o 2)] < 5 [ [HOEME O™ + HO[(0hE )" - (26.)"]

2(&)up (€. + () [(wa(8,6)" — (w(€.€)"] | d¢
[(2M)™ + (2M)*R;, + 2M )P + (2M)*R; ||g" — &°
= aOT“gl - g2H7 k=12, (81)

»Mﬂ +

From the formulas (78), (79), (81) it follows that

Ai(g) — Ai(g)] < 22 (00 + Co)Ry, + m[42M)" + (2M)°R,)

+p[A2MY + 2MPR)) T8 - g
— aTlg' — gl (52)

A similar estimate is true for the difference |A(g!) — A, (g2)]:

- 28™

[Aa(g") — A2(8)] < T5- (a0 + Co) Ry, +m[4(2M)" + (2M)*R;,]

+p[ARMY + @MPR;] ) T|g - gl
=T lg' —g°[l. (83)
Let’s use equality (61) and write down the difference

z x+t—§
1

Ronnlg)- Ao =5 [ [ [@he )" +a O (ke 1) - (:F( )]

0 t—x+&

+ () (uh (6, 7)) + PO [(uhle, )" = (uRle, 7)']| drdg, k=1,2. (89)

Estimate this difference as

z x+t—¢
Aannlg) - A < 5 [ [ @6 )"+ HO[0hE )" - ek )]

=2
0 t—x+&
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STEL(E ) + () [(h(E 7)) — (e )]
< Zleay + @R, + @My + MR |8 )

= a3T?|g' —g®||, k=1,2. (85)
From equation (62) we find

T

Areale)) - Arss(e?) = = [ [0k 042 - 9"

+ J2(£) [(Ué(&t +T— f))m - (%%(57 t+z— 5))m}
+ (&) (ug (6t — 2+ &) + () [(up(&,t — 2+ €)) — (Ui (6, — x4+ £))P]

- (a(ng,i(f,t e+ ) 4+ O [t — 2+ ) — (et~ + )]
L AOWAE T — o+ O + PO [t — 2+ )P — (W26t —x+ ) )}d&

k=1,2.

Estimate this difference as follows.

|121\4+]€( A4+k | < /) Uk g t+x — )m

to (f)[(”k(f l+x— f))m - (Uk<§ t+x —5))7”]
+ (&) (up(&,t =2+ )" + () [(ur(& t —2+ )" — (up(&,t —x +€))"
+7(E) (&t =2+ 8)" + (O [(vh(Et —x +6)" = (&t —z+6)"]
£)

(&t =2+ 6)" + P©)[(ur(€,t — 2+ )" — (ug(&,t — 2 +))"] | de
< %[2(21\4)7” + (2M)R;, +22M)” + (2M)R}]|g' — &°|

+1(

= aTg' — g, k=12 (87)
Using equality (63), we obtain

T

Aonn(e)) ~ Aose(e?) = = [ (@ ket + 20— )" ub(et+2 - 9

+mo?([(vh(&t+ 2= )" = (& t+x =) Twi(E t+a—¢)
+mo(€) (V€ t+x— &))" W€, t+ ) +pa(€) (ub (€.t — €))0h(E t o —€)
+ PO [(up(&t + 2 — ) — (Wbt + 2 — ) k(€ t+a—€)
+p? (&) (R (€. t+2 =€) T(E, t+x — &) +mE(€) (vh(€ t— 2 +€)" T wl (€, t—z+€)
+moX(©)[(vh(&t -2+ )" = (&t -2 +9)" Jul€t -z +¢)
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+ma? (&) (vt —ax+ &))" 1wl &t—z+8)

+pg(€) (ub (&t —x + €)' o6t — x4+ £)
+ () [(ub (€t —x + )  — (u <,t—x+£))p*1]vé(£,t—a:+§)
—l—qu(S)(ukft :v—l—f)p lkat—x—l—ﬁ)}dﬁ, kE=1,2. (88)

Evaluating this difference, we find

T

|A\6+k(g1) - A\6+k<82)| < %/ ‘mﬁ(f) (vli(&t"i_ T — f))m ' wi(§t+x—¢€)

+mo® () [(vp(&t+a2 =€) = (&t +a—-9)" &t +a—§)
+mo(€) (B(E t+ 2 — €)™ W(€ 4w — &)+ pa(E) (ub(€. t+2 — ) vh(E 1+ z—€)
+ g€ [(uh(&t 2= ) = (W&t +2—6) Juk(E t+a—¢)
+pg* () (uR (€ t+2— &) (& t+z— &) +mT(€) (vh (&t —2+6)" W& t— 1 +€)
+me(©) (k& t -2+ )" = (W&t —z+ )" wi(€t—z+¢)
+mo*(€) (Vi (&t —a+ &))" w(Et —a+)
+ (&) (up (&t —x+ €)' ol (6t — 2 +€)
+ () [(up(6,t —x + ) = (€t —x + &) op(E,t —x +6)
+ () (uR(&,t — 2+ €))7 T(E b~ + )| de
T

< 5 [2mEM)™ + m@MPR,_, + 202M) +p2MPF;_ ] g — &

m—1 m—l]

= asT|g" —g*||. (89)

Take a number p € (0,1) and choose T from the condition

Th := min {Té, p/ai, plag, \/plas, p/ay, p/ozg,}.
Then R R
|Ag! — Ag?llcemy) < rllg' — &2lle@m))-

Thus, the mapping A s compressive on the set M(Ty, M, ). By virtue of the
Banach principle of compressive maps we conclude that on set M(Tpy, M, ) there
exists a unique solution of operator equation (58). Theorem 4.2 is proved. O

Remark 4.2. The stability theorem can be obtained only for small 7. The local
stability theorem can be deduced from the Banach principle of compressive maps.
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