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SYSTEMS OF ORDER (α + β)
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Abstract This paper aims to identify exchange coefficients of a nonlinear polynomial
tri-compartmental catenary system of (α + β) order. This is based on two principal
procedures. The first procedure presented is related to the recommended solution
consisting of introducing an adequate time t∗ > 0 in a way to be defined. That is to
say: wait a moment to allow the exchange to settle in the polynomial (α + β) order
nonlinear catenary system after injecting the quantity into the main compartment, then
measure this compartment with compartment 2, at this time t∗ > 0. In the second
procedure, we apply the Taylor formula to linearize the nonlinear system and identify
the exchange coefficients. In the end, we will prove that the linearization method is
stable.
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1 Introduction

In this paper, Nonlinear compartmental systems of polynomial type are encountered
particularly in population dynamics. These systems are controlled by the following
hypothesis: "The quantity passing from compartment i to compartment j is equal to
kijx

α
i x

β
j (β = 0 if compartment j is outside environment)(see [2, 3, 5]) where xi(t)

denotes the mass quantity of compartment i at time t and kij the exchange coefficient
and α, β are constants characterizing the compartmental system. This is so-called the
hypothesis of order polynomial exchange (α + β). The results of the bicompartmental
system of polynomials are the result of the work of B. Hebri and Y. Cherruault (see
[5]). The problem here is to determine the exchange coefficients between compartments
by measuring of compartments the amount of the substance in a minimum number of
compartments (not all the compartments). After injecting an amount of substance into
compartment number one and waiting for a certain amount of time for the amount of
substance to reach the second and third compartments. By measuring the amount
of materials in the first and second compartments. The system is modeled using a
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nonlinear differential equation under the law of conservation of mass:

dxi(t)

dt
=

n∑
j=1
j 6=i

kjixj(t)

︸ ︷︷ ︸
−

n∑
j=1
j 6=i

kijxi(t)

︸ ︷︷ ︸∑
quantities entering −

∑
quantities leaving

To be approximated to a linear differential equation using Taylor’s formula, the lin-
earization method is considered a stable method.

2 Definitions and notations
We consider the nonlinear tri-compartmental catenary system of polynomial type,
namely (S

(P )
NL ), shown in figure (1).

Figure 1:
(
S
(P )
NL

)
: Nonlinear tri-compartimental catenary system.

The mass balance principle in each compartment leads to nonlinear differential
equations (see [2]). The identification is done by exiting the system with and instan-
taneous injection of substance quantity a in the first compartment.
Thus we can say that the tri-compartmental catenary system is governed by the fol-
lowing differential system with initial condition:

x′1(t) = k21x
α
2 (t)x

β
1 (t)− k12xα1 (t)x

β
2 (t)− k1exα1 (t)

x′2(t) = k12x
α
1 (t)x

β
2 (t) + k32x

α
3 (t)x

β
2 (t)−

(
k21x

β
1 (t) + k23x

β
3 (t)

)
xα2 (t)

x′3(t) = k23x
α
2 (t)x

β
3 (t)− k32xα3 (t)x

β
2 (t)

x1(0) = a
x2(0) = 0
x3(0) = 0

(1)

we note :
X : [0,+∞[ −→ R3

t −→ XT (t) = (x1(t), x2(t), x3(t))
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The state function of the tri-compartmental catenary system (S
(P )
NL ), is:

F : R3 −→ R3

(x1, x2, x3) −→ F (x1, x2, x3) = (f1(x1, x2, x3), f2(x1, x2, x3), f3(x1, x2, x3))

such that: 
f1(x1, x2, x3) = k21x

α
2x

β
1 − k12xα1x

β
2 − k1exα1

f2(x1, x2, x3) = k12x
α
1x

β
2 + k32x

α
3x

β
2 −

(
k21x

β
1 + k23x

β
3

)
xα2

f3(x1, x2, x3) = k23x
α
2x

β
3 − k32xα3x

β
2

With these notations we can write the differential system (1) under the vectorial form:
X ′ (t) = F T (XT (t))

X(0) =

 a
0
0

 (2)

3 Preliminary study
The partial derivatives of the function F being:



∂f1
∂x1

(x1, x2, x3) = βk21x
α
2x

β−1
1 − αk12xα−11 xβ2 − αk1exα−11

∂f1
∂x2

(x1, x2, x3) = αk21x
α−1
2 xβ1 − βk12xα1x

β−1
2

∂f1
∂x3

(x1, x2, x3) = 0

∂f2
∂x1

(x1, x2, x3) = αk12x
α−1
1 xβ2 − βk21x

β−1
1 xα2

∂f2
∂x2

(x1, x2, x3) = βk12x
α
1x

β−1
2 + βk32x

α
3x

β−1
2 − α

(
k21x

β
1 + k23x

β
3

)
xα−12

∂f2
∂x3

(x1, x2, x3) = αk32x
α−1
3 xβ2 − k23x

β−1
3 xα2

∂f3
∂x1

(x1, x2, x3) = 0

∂f3
∂x2

(x1, x2, x3) = αk23x
α−1
2 xβ3 − βk32xα3x

β−1
2

∂f3
∂x3

(x1, x2, x3) = βk23x
α
2x

β−1
3 − αk32xα−13 xβ2

(3)
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The function F is differentiable in all point (x1, x2, x3) such that x1 6= 0, x2 6= 0 and
x3 6= 0 for all α > 0 and all β > 0, and the Jacobain matrix is given by:(

DF(x1,x2,x3)

)
=

=

 −g1(x1, x2, x3)− αk1exα−11 g2(x1, x2, x3) 0
g1(x1, x2, x3) −g2(x1, x2, x3)− g3(x1, x2, x3) g4(x1, x2, x3)

0 g3(x1, x2, x3) −g4(x1, x2, x3)


with: 

g1(x1, x2, x3 = αk12x
α−1
1 xβ2 − βk21xα2x

β−1
1

g2(x1, x2, x3) = αk21x
α−1
2 xβ1 − βk12xα1x

β−1
2

g3(x1, x2, x3) = αk23x
α−1
2 xβ3 − βk32xα3x

β−1
2

g4(x1, x2, x3) = αk32x
α−1
3 xβ2 − βk23xα2x

β−1
3

For the linearization of the system (2) we apply the Taylor formula in the neighborhood
of the initial condition (a, 0, 0).

Remark 1. 1. F is not differentiable in (a, 0, 0) if α < 1 or β < 1.

2. If α ≥ 1 and β ≥ 1, F is differentiable in (a, 0, 0).

The Taylor formula applied in neighborhood of (a, 0, 0) leads to:

F T (x1, x2, x3) =

= F T (a, 0, 0) + (DF )(a,0,0) (x1 − a, x2, x3)
T +

(
D2F

)
(xθ1,xθ2,xθ3)

(x1 − a, x2, x3)2

with: (xθ1, xθ2, xθ3) = (x1 + θ (x1 − a) , x2 + θ.x2, x3 + θ.x3) with |θ| < 1.
For t sufficiently small, Our aim is to approach the differential system (1) on [0, t0] by
the following linear differential system:

Z ′ (t) = F T (a, 0, 0) + (DF )(a,0,0) (z1 − a, z2, z3)
T (4)

with

(DF )(a,0,0) =

 αk1ea
α−1 0 0

0 0 0
0 0 0


We remark that this matrix is not well adapted to make an approximation of the
exchange coefficients, so we introduce a temporization procedure. First we choose a
time t∗ > 0 close to 0 and consider the differential system witch governess the tri-
compartmental catenary system, represented by the figure (1), at time t∗

x′1(t) = k21x
α
2 (t)x

β
1 (t)− k12xα1 (t)x

β
2 (t)− k1exα1 (t)

x′2(t) = k12x
α
1 (t)x

β
2 (t) + k32x

α
3 (t)x

β
2 (t)−

(
k21x

β
1 (t) + k23x

β
3 (t)

)
xα2 (t)

x′3(t) = k23x
α
2 (t)x

β
3 (t)− k32xα3 (t)x

β
2 (t)

x1(t
∗) = a∗

x2(t
∗) = b

x3(t
∗) = c

(5)
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That we can write in the following equivalent vectorial form:{
X ′ (t)) = F T

(
XT (t)

)
XT (t∗) = (a∗, b, c)

(6)

The Taylor formula on the interval [t∗, t0] is given by:

F T (x1, x2, x3) = F T (a∗, b, c) + (DF )(a∗,b,c) (x1 − a∗, x2 − b, x3 − c)
T

+
(
D2F

)
(xθ1,xθ2,xθ3)

(x1 − a∗, x2 − b, x3 − c)2

with: (xθ1, xθ2, xθ3) = (x1 + θ (x1 − a∗) , x2 + θ(x2 − b), x3 + θ(x3 − c)) with |θ| < 1.
and:

(
DF(a∗,b,c)

)
=

 −g1(a∗, b, c)− αk1eaα−1∗ g2(a∗, b, c) 0
g1(a∗, b, c) −g2(a∗, b, c)− g3(a∗, b, c) g4(a∗, b, c)

0 g3(a∗, b, c) −g4(a∗, b, c)


such that: 

g1(a∗, b, c) = αk12a
α−1
∗ bβ − βk21bαaβ−1∗

g2(a∗, b, c) = αk21b
α−1aβ∗ − βk12aα∗ bβ−1

g3(a∗, b, c) = αk23c
βbα−1 − βk32bβ−1cα

g4(a∗, b, c) = αk32b
βcα−1 − βk23cβ−1bα

and

F T (a∗, b, c) =

 k21b
αaβ∗ − k12aα∗ bβ − k1eaα∗ ;

k12a
α
∗ b
β + k32c

αbβ −
(
k21a

β
∗ + k23c

β
)
bα ;

k23b
αcβ − k32cαbβ


For t sufficiently small, we propose to approach the differential system (5) on [t∗, t0] by
the following linear differential system:

Z ′ (t) = F T (a∗, b, c) + (DF )(a∗,b,c) (z1(t)− a∗, z2(t)− b, z3(t)− c)
T (7)

We pose: 
g1(a∗, b, c) = g∗1
g2(a∗, b, c) = g∗2
g3(a∗, b, c) = g∗3
g4(a∗, b, c) = g∗4

and 
f ∗1 = k21b

αaβ∗ − k12aα∗ bβ − k1eaα∗
f ∗2 = k12a

α
∗ b
β + k32c

αbβ −
(
k21a

β
∗ + k23c

β
)
bα

f ∗3 = k23b
αcβ − k32cαbβ

We can prove that there exists γ, δ and ω such that:

(DF(a∗,b,c)).

 γ
δ
ω

 = F T (a∗, b, c)
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indeed  −g∗1 − αk1eaα−1∗ g∗2 0
g∗1 −g∗2 − g∗3 g∗4
0 g∗3 −g∗4

 .

 γ
δ
ω

 =

 f ∗1
f ∗2
f ∗3 ‘


Or: 

−g∗1γ − αk1eaα−1∗ γ + g∗2δ = f ∗1
g∗1γ − (g∗2 + g∗3)δ + g∗4ω = f ∗2
g∗3δ − g∗4ω = f ∗3

then: 

γ =
−(f ∗1 + f ∗2 + f ∗3 )

αk1ea
α−1
∗

=
a∗
α

δ =
g∗1γ − f ∗3 − f ∗2

g∗2

ω =
g∗3δ − f ∗3

g∗4

Therefore we consider the linear differential system:

Z ′(t) = (DF(a∗,b,c)).

 z1(t)− a∗ + γ
z2(t)− b+ δ
z3(t)− c+ ω


The change of the state function of the tri-compartmental catenary system:

Y (t) =

 y1(t)
y2(t)
y3(t)

 =

 z1(t)− a∗ + γ
z2(t)− b+ δ
z3(t)− c+ ω

 (8)

permits to reduce the system (6) to the canonical form:{
Y ′(t) = (DF )(a∗,b,c) .Y (t)

Y T (t∗) = (γ, δ, ω)
(9)

The matrix (DF )(a∗,b,c) has the general form of a compartmental matrix, so to this
matrix we can associate "formally" the compartmental linear system that we will note(
S
(TP )
lin

)
represented by the following figure:

with: 

p12 = αk12a
α−1
∗ bβ − βk21bαaβ−1∗

p21 = αk21b
α−1aβ∗ − βk12aα∗ bβ−1

p23 = αk23c
βbα−1 − βk32bβ−1cα

p32 = αk32b
βcα−1 − βk23cβ−1bα

p31 = p13 = 0
p1e = αk1ea

α−1
∗



10 Ayoub K., Khelifa S.

Figure 2:
(
S
(TP )
lin

)
Linear model approximation.

Proposition 3.1. The real numbers a∗, b and c such that

p12 > 0 p21 > 0 p23 > 0 p32 > 0

exist if and only if α > β > 1.

Proof. Knowing that:{
p12 > 0
p21 > 0

⇐⇒
{
αk12a

α
∗ − βk21bα−βa

β
∗ > 0

αk21b
α−βaβ∗ − βk12aα∗ > 0

and {
p23 > 0
p32 > 0

⇐⇒
{
αk23b

α − βk32bβcα−β > 0
αk32b

βcα−β − βk23bα > 0

Let x = k12a
α
∗ and y = k21b

α−β and z = αk23b
α and w = βk32b

βcα−β

(x > 0 and y > 0 and z > 0 and w > 0){
p12 > 0
p21 > 0

⇐⇒
{
αx− βy > 0
αy − βx > 0{

p23 > 0
p32 > 0

⇐⇒
{
αz − βw > 0
αw − βz > 0

If α ≤ β the solutions set: {
αx− βy > 0
αy − βx > 0

and {
αz − βw > 0
αw − βz > 0

is empty.
If α > β > 1 the solutions set :{

αx− βy > 0
αy − βx > 0{
αz − βw > 0
αw − βz > 0

is not empty.
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3 Calculation of the exchange coefficients
{pij/ ij = 1, 2, 3 i 6= j} of the system

(
S
(TP )
lin

)
and the

excretion coefficient p1e

Note the compartmental matrix of the linear model
(
S
(TP )
lin

)
by:

A =

 −p12 − p1e p21 0
p12 −p21 − p23 p32
0 p23 −p32


The matrixA being tridiagonal and compartmental, its eigenvalues noted λi {i ∈ {1, 2, 3}}
are real, distinct and strictly negative. The general solution of the system is written
in the form

yj(t) =
n∑
i=1

βji exp (λit) ∀i ∈ {1, 2, 3}

where βji (i ∈ {1, 2, 3}) is the Jacolumn of the matrix B of the elementary masses,
associated with the i compartment.

The measurements made on the first and the second compartment make the mini-
mization of the functional J introduced by Y. Cherruault [4] possible:

J
(
βik, λk, 1 ≤ i ≤ 2, 1 ≤ k ≤ 3

)
=

m∑
j=1

 2∑
i=1

(
xi(tj)−

3∑
k=1

βike
λktj

)2
 (10)

we put:

min J
(
βik, λk, 1 ≤ i ≤ 2, 1 ≤ k ≤ 3

)
= J

(
βi∗k , λ

∗
k, 1 ≤ i ≤ 2, 1 ≤ k ≤ 3

)
The functions ϕi, i ∈ {1, 2, 3} defined by:

ϕi (t) = exp (λ∗i t) ,∀t ≥ t∗, ∀i ∈ {1, 2, 3}

being linearly independent we can conclude that for every integer i in {1, 2, 3} we have:

λi∗β1∗
i = −p12β1∗

i − p1eβ1∗
i + p21β

2∗
i (11)

λ∗iβ
2∗
i = p12β

1∗
i − p21β2∗

i − p23β2∗
i + p32β

3
i (12)

λ∗iβ
3
i = p23β

2∗
i − p32β3

i (13)

From the relationship (11) for i = 1 and i = 2 we have:{
λ∗1β

1∗
1 = −p12β1∗

1 − p1eβ1∗
1 + p21β

2∗
1

λ∗2β
1∗
2 = −p12β1∗

2 − p1eβ1∗
2 + p21β

2∗
2

we conclude then that if β2∗
1 β

1∗
2 − β2∗

2 β
1∗
1 6= 0:

p21 =
(λ∗1 − λ∗2) β1∗

1 β
1∗
2

β2∗
1 β

1∗
2 − β2∗

2 β
1∗
1

. (14)
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We recall that:
x′∗1 = k21b

αaβ∗ − k12aα∗ bβ − k1eaα∗
and

x′∗1 = y′1(t
∗) = λ∗1β

1∗
1 e

λ∗1t
∗
+ λ∗2β

1∗
2 e

λ∗2t
∗
+ λ∗3β

1∗
3 e

λ∗3t
∗

we recall too that: 
p12 = αk12a

α−1
∗ bβ − βk21bαaβ−1∗

p21 = αk21b
α−1aβ∗ − βk12aα∗ bβ−1

therefore: 
a∗
α
p12 = k12a

α
∗ b
β − β

α
k21b

αaβ∗

b

α
p21 = k21b

αaβ∗ −
β

α
k12a

α
∗ b
β

consequently:

a∗
α
p12 −

b

α
p21 = k12a

α
∗ b
β − k21bαaβ∗ −

β

α

(
k21b

αaβ∗ − k12aα∗ bβ
)

a∗
α
p12 −

b

α
p21 = −x′∗1 )− k1eaα∗ −

β

α
(x′∗1 ) + k1ea

α
∗ )

and we have:
k1ea

α
∗ =

a∗
α
p1e

therefore:
a∗
α
p12 −

b

α
p21 = x′∗1 )

(
−1− β

α

)
+
a∗
α
p1e

(
−1− β

α

)
then:

a∗
α
p12 +

a∗
α
p1e

(
1 +

β

α

)
=
b

α
p21 + x′∗1 )

(
−1− β

α

)
the relationship (11) for i = 3 gives:

β1∗
3 p12 + p1eβ

1∗
3 = p21β

2∗
3 − λ∗3β1∗

3

therefore: a∗
α

a∗
α

(
1 +

β

α

)
β1∗
3 β1∗

3

( p12
p1e

)
=

 b

α
p21 + x′∗1 )

(
−1− β

α

)
p21β

2∗
3 − λ∗3β1∗

3


by putting:

M =

 a∗
α

a∗
α

(
1 +

β

α

)
β1∗
3 β1∗

3


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M1 =

 b

α
p21 + x′∗1 )

(
−1− β

α

)
a∗
α

(
1 +

β

α

)
p21β

2∗
3 − λ∗3β1∗

3 β1∗
3



M2 =

 a∗
α

b

α
p21 + x′∗1 )

(
−1− β

α

)
β1∗
3 p21β

2∗
3 − λ∗3β1∗

3


and if β1∗

3 6= 0, we obtain: 
p12 =

detM1

detM

p1e =
detM2

detM

(15)

Now, if we add up the relationships (11), (12) and (13) member to member, we get:

β3
i = β3∗

i = −β1∗
i − β2∗

i − p1e
β1∗
i

λ∗i
∀i ∈ {1, 2, 3} . (16)

The relationship (13) for i = 1 and i = 2 gives:{
λ∗1β

3∗
1 = p23β

2∗
1 − p32β3∗

1

λ∗2β
3∗
2 = p23β

2∗
2 − p32β3∗

2

(17)

if β2∗
1 β

3∗
2 − β2∗

2 β
3∗
1 6= 0, we have:

p23 =
(λ∗1 − λ∗2) β3∗

1 β
3∗
2

β2∗
1 β

3∗
2 − β2∗

2 β
3∗
1

(18)

and

p32 = −
λ∗1β

3∗
1 β

2∗
2 − λ∗2β3∗

2 β
2∗
1

β3∗
1 β

2∗
2 − β3∗

2 β
2∗
1

(19)

The exchange coefficients p1e, p12, p21, p23, and p32 are then identify. We denote:
p1e = ν∗1
p12 = ν∗2
p21 = ν∗3
p23 = ν∗4
p32 = ν∗5

3.1 Calculation of the initial condition c

Proposition 3.1. The initial condition c is given by:

c =
1

ν∗5

[
(α + β)

(
λ∗1β

3∗
1 e

λ∗1t
∗
+ λ∗2β

3∗
2 e

λ∗2t
∗
+ λ∗3β

3∗
2 e

λ∗3t
∗)

+ bν∗4
]
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Proof. We have
x′3(t

∗) = y′3(t
∗)

therefore:
k32b

βcα − k23cβbα = λ∗1β
3∗
1 e

λ∗1t
∗
+ λ∗2β

3∗
2 e

λ∗2t
∗
+ λ∗3β

3∗
2 e

λ∗3t
∗

and we have
ν∗4 = αk23c

βbα−1 − βk32bβ−1cα
ν∗5 = αk32b

βcα−1 − βk23cβ−1bα

so:
cν∗5 − bν∗4 = (α + β)

(
k32b

βcα − k23cβbα
)

consequently:

c =
1

ν∗5

[
(α + β)

(
k32b

βcα − k23cβbα
)
+ bν∗4

]
Finally we have:

c =
1

ν∗5

[
(α + β)

(
λ∗1β

3∗
1 e

λ∗1t
∗
+ λ∗2β

3∗
2 e

λ∗2t
∗
+ λ∗3β

3∗
2 e

λ∗3t
∗)

+ bν∗4
]

4 Calculation of the excretion coefficient k1e and the
exchange coefficients {kij/ i, j = 1, 2, 3 i 6= j} of the
system

(
S
(P )
NL

)
Proposition 4.1. Let p∗ =

 β1∗
1 β2∗

1 β3∗
1

β1∗
2 β2∗

2 β3∗
2

β1∗
3 β2∗

3 β3∗
3

 the partial measurement matrix asso-

ciated to the system
(
S
(TP )
lin

)
identified by ( 9) if α > β > 1 then the nonlinear system(

S
(p)
NL

)
is identified. Furthermore we have:

k1e =
detM2

aα−1∗ detM

k12 =
a∗αν

∗
2 + bβν∗3

(α2 − β2)bβaα∗
; k21 =

a∗βν
∗
2 + bν∗3α

(α2 − β2)bαaβ∗

Proposition 4.2.

k23 =
bαν∗4 + cβν∗5
(α2 − β2)cβbα

; k32 =
bβν∗4 + cν∗5α

(α2 − β2)cαbβ
.
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Proof. We proved that:

p1e =
detM2

detM

and we have:
k1e =

p1e

aα−1∗

consequently:

k1e =
detM2

aα−1∗ detM

We recall firstly that:

p12 = ν∗2 = αk12b
βaα−1∗ − βk21aβ−1∗ bα

p21 = ν∗3 = αk21a
β
∗b
α−1 − βk12bβ−1aα∗

a linear combination of them gives:

a∗αν
∗
2 + bβν∗3 = k12b

βaα∗ (α
2 − β2)

so:
k12 =

a∗αν
∗
2 + bβν∗3

(α2 − β2)bβaα∗

another linear combination of them gives:

a∗βν
∗
2 + bαν∗3 = (α2 − β2)bαaβ∗k21

then:
k21 =

a∗βν
∗
2 + bν∗3α

(α2 − β2)bαaβ∗
.

We recall secondly that:

p23 = ν∗4 = αk23c
βbα−1 − βk32bβ−1cα

p32 = ν∗5 = αk32b
βcα−1 − βk23cβ−1bα

therefore:
bαν∗4 + cβν∗5 = k23c

βbα(α2 − β2)

so:
k23 =

bαν∗4 + cβν∗5
(α2 − β2)cβbα

and
bβν∗4 + cαν∗5 = (α2 − β2)cαbβk32

then:
k32 =

bβν∗4 + cν∗5α

(α2 − β2)cαbβ
.
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5 Stability of the linearization method
Notation 1. We note the exchange coefficients of a real linear tri-compartmental cate-
nary system by: 

p12 = ϑ∗1
p21 = ϑ∗2
p23 = ϑ∗3
p32 = ϑ∗4,

and the coefficient exchange of a real nonlinear tri-compartmental catenary system by
k12 ; k21 ; k23 ; k32, and note that ε1 ; ε2 ; ε3 and ε4 errors made on the calculation
of p12 , p21 , p23 and p32 respectively

Proposition 5.1. The exchange coefficients of the nonlinear polynomial system can
be approached by: 

k12 =
αϑ∗1a∗ + βϑ∗2b

(α2 − β2)aα∗ b
β

k21 =
αϑ∗2b+ βϑ∗1a∗

(α2 − β2)aβ∗bα

(20)

and 
k23 =

αϑ∗3b+ βϑ∗4c

(α2 − β2)bαcβ

k32 =
αϑ∗4c+ βϑ∗3b

(α2 − β2)bβcα

(21)

Proposition 5.2. which represent the respective approximations of k12, k21, k23 and
k32. More precisely: 

|k12 − k12| ≤ max(ε1, ε2).
αa∗ + βb

(α2 − β2)aβ∗bα

|k21 − k21| ≤ max(ε1, ε2).
αb+ βa∗

(α2 − β2)aβ∗bα
,

(22)

and 
|k23 − k23| ≤ max(ε3, ε4).

αb+ βc

(α2 − β2)bβcα

|k32 − k32| ≤ max(ε3, ε4).
αc+ βb

(α2 − β2)bβcα

(23)

Proof. ϑ∗1 being an approximation of p12 then there exists ε′1(|ε
′
1| ≤ ε1) such that:

ϑ∗1 + ε
′

1 = αk12b
βaα−1∗ − βk21bαaβ−1∗ (24)

by following:
αb−1a∗(ϑ

∗
1 + ε

′

1) = α2k12b
β−1aα∗ − αβk21bα−1aβ∗ (25)

ϑ∗2 being an approximation of p21 then there exists ε′2(|ε
′
2| ≤ ε2) such that:

ϑ∗2 + ε
′

2 = αk21b
α−1aβ∗ − βk12bβ−1aα∗ (26)
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by following:
β(ϑ∗2 + ε

′

2) = αβk21b
α−1aβ∗ − β2k12b

β−1aα∗ (27)

if we add up the two the relation (25) and (27) member to member, we get

αb−1a∗(ϑ
∗
1 + ε

′

1) + β(ϑ∗2 + ε
′

2) = α2k12b
β−1aα∗ − β2k12b

β−1aα∗

therefore:

k12 =
αa∗(ϑ

∗
1 + ε

′
1) + βb(ϑ∗2 + ε

′
2)

(α2 − β2)bβaα∗
.

We can see too that the relationship (28) and (29) are equivalent respectively to:

βa∗b
−1(ϑ∗1 + ε

′

1) = βαk12b
β−1aα∗ − β2k21b

α−1aβ∗ (28)

and
α(ϑ∗2 + ε

′

2) = α2k21b
α−1aβ∗ − βαk12bβ−1aα∗ (29)

by adding the two relations (28) and (29) member to member, we obtain:

βa∗b
−1(ϑ∗1 + ε

′

1) + α(ϑ∗2 + ε
′

2) = α2k21b
α−1aβ∗ − β2k21b

α−1aβ∗

therefore:

k21 =
βa∗(ϑ

∗
1 + ε

′
1) + bα(ϑ∗2 + ε

′
2)

(α2 − β2)bαaβ∗
.

knowing that:

k12 = lim
(ε
′
1,ε
′
2)−→(0,0)

αa∗(ϑ
∗
1 + ε

′
1) + βb(ϑ∗2 + ε

′
2)

(α2 − β2)bβaα∗
=
αa∗ϑ

∗
1 + βbϑ∗2

(α2 − β2)bβaα∗

and

k21 = lim
(ε
′
1,ε
′
2)−→(0,0)

βa∗(ϑ
∗
1 + ε

′
1) + bα(ϑ∗2 + ε

′
2)

(α2 − β2)bαaβ∗
=
βa∗ϑ

∗
1 + bαϑ∗2

(α2 − β2)bαaβ∗

we can write that:

|k12 − k12| =
αa∗(ϑ

∗
1 + ε

′
1) + βb(ϑ∗2 + ε

′
2)

(α2 − β2)bβaα∗
− αa∗ϑ

∗
1 + bβϑ∗2

(α2 − β2)bβaα∗

|k12 − k12| =
αa∗ε

′
1 + bβε

′
2

(α2 − β2)bβaα∗
≤ (αa∗ + bβ)max

(
ε
′
1, ε

′
2

)
(α2 − β2)bβaα∗

so:
|k12 − k12| ≤

(αa∗ + bβ)max (ε1, ε2)

(α2 − β2)bβaα∗
,

and

|k21 − k21| =
βa∗(ϑ

∗
1 + ε

′
1) + αb(ϑ∗2 + ε

′
2)

(α2 − β2)bαaβ∗
− βa∗ϑ

∗
1 + bαϑ∗2

(α2 − β2)bαaβ∗

|k12 − k12| =
βa∗ε

′
1 + bαε

′
2

(α2 − β2)bαaβ∗
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|k12 − k12| ≤
(βa∗ + bα)max

(
ε
′
1, ε

′
2

)
(α2 − β2)bαaβ∗

so:
|k12 − k12| ≤

(βa∗ + bα)max (ε1, ε2)

(α2 − β2)bαaβ∗
.

ϑ∗3 being an approximation of p23 there exists ε′3(|ε
′
3| ≤ ε3) such that:

ϑ∗3 + ε
′

3 = αk23c
βbα−1 − βk32cαbβ−1 (30)

ϑ∗4 being an approximation of p32 there exists ε′4(|ε
′
4| ≤ ε4) such that:

ϑ∗4 + ε
′

4 = αk32c
α−1bβ − βk23cβ−1bα (31)

First step:
Multiplying the two members of the relation (30) by the number αbc−1, we get:

αc−1b(ϑ∗3 + ε
′

3) = α2k23c
β−1bα − αβk32cα−1bβ (32)

by multiplying the two members of the relation (31) by the number β, we get:

β(ϑ∗4 + ε
′

4) = αβk32c
α−1bβ − β2k23c

β−1bα (33)

if we add up the relations (32) and (33) member to member, we get:

αc−1b(ϑ∗3 + ε
′

3) + β(ϑ∗4 + ε
′

4) = α2k23c
β−1bα − β2k23c

β−1bα

by multiplying the two terms by c we will have:

αb(ϑ∗3 + ε
′

3) + βc(ϑ∗4 + ε
′

4) = k23(α
2 − β2)cβbα

therefore:

k23 =
αb(ϑ∗3 + ε

′
3) + βc(ϑ∗4 + ε

′
4)

(α2 − β2)cβbα
.

Second step:
Multiplying the two members of the relation (30) by the number βbc−1, we obtain:

βbc−1(ϑ∗3 + ε
′

3) = βαk23c
β−1bα − β2k32c

α−1bβ (34)

by multiplying the two members of the relation (31) by the number α, we get:

α(ϑ∗4 + ε
′

4) = α2k32c
α−1bβ − βαk23cβ−1bα (35)

if we add up the relations (34) and (35) member to member, we obtain:

βbc−1(ϑ∗3 + ε
′

3) + α(ϑ∗4 + ε
′

4) = α2k32c
α−1bβ − β2k32c

α−1bβ

by multiplying the two terms by c we will have:

βb(ϑ∗3 + ε
′

3) + cα(ϑ∗4 + ε
′

4) = k32(α
2 − β2)cαbβ
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therefore:

k32 =
βb(ϑ∗3 + ε

′
3) + cα(ϑ∗4 + ε

′
4)

(α2 − β2)cαbβ
.

knowing that:

k23 = lim
(ε
′
3,ε
′
4)−→(0,0)

αb(ϑ∗3 + ε
′
3) + βc(ϑ∗4 + ε

′
4)

(α2 − β2)cβbα
=

αbϑ∗3 + βcϑ∗4
(α2 − β2)cβbα

and

k32 = lim
(ε
′
3,ε
′
4)−→(0,0)

βb(ϑ∗3 + ε
′
3) + cα(ϑ∗4 + ε

′
4)

(α2 − β2)cαbβ
=

βbϑ∗3 + cαϑ∗4
(α2 − β2)cαbβ

we can write:

|k23 − k23| =
αb(ϑ∗3 + ε

′
3) + βc(ϑ∗4 + ε

′
4)

(α2 − β2)cβbα
− αbϑ∗3 + cβϑ∗4

(α2 − β2)cβbα

|k23 − k23| =
αbε

′
3 + cβε

′
4

(α2 − β2)cβbα
≤ (αb+ cβ)max

(
ε
′
3, ε

′
4

)
(α2 − β2)cβbα

so:
|k23 − k23| ≤

(αb+ cβ)max (ε3, ε4)

(α2 − β2)cβbα
,

and

|k32 − k32| =
βb(ϑ∗3 + ε

′
3) + αc(ϑ∗4 + ε

′
4)

(α2 − β2)cαbβ
− βbϑ∗3 + cαϑ∗4

(α2 − β2)cαbβ

|k32 − k32| =
βbε

′
3 + cαε

′
4

(α2 − β2)cαbβ
≤ (βb+ cα)max

(
ε
′
3, ε

′
4

)
(α2 − β2)cαbβ

so:
|k32 − k32| ≤

(βb+ cα)max (ε3, ε4)

(α2 − β2)cαbβ
.

Remark 1. We have:
p1e = p1e (see [7])

So:
k1e =

p1e
αaα−1∗

.

6 Conclusion
1. The linear model associated to the non linear polynomial tri-compartmental cate-

nary system of (α + β) order involves four important difficulties:

The initial condition at time t = 0 does not permit to give a complete informa-
tion about the model (S(P )

NL ). A temporization t∗ is introduced to suppress this
difficulty.
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2. If this temporization is not modulated, the linear model is not necessarily real.
We have shown that the measures done on the compartment 1 and on the com-
partment 2 permit to choose one measure at instant ti1 = t∗ such that we can
develop a linearization method.

3. The nonhomogeneous condition x3(t
∗) = c being unknown is identified form

measures done on compartment 1 and on compartment 2.

4. The linearization method is stable.
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