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1 Introduction

In many practical applications, parameters, which describe the properties of media,
are unknown or scarcely known. The unknown parameters are related to the observed
data through a forward model, such as a differential equation, that maps realizations
of parameters to observable. In particular, the solvability of the inverse problems in
various formulations with different overdetermination conditions for partial differential
equations is extensively studied in many papers (see [1]-[4]).

The problem of determining the convolution kernel of integro-differential equations
was studied in many publications [5]-[13] (see, also, the references in [5]), in which
both one and multi-dimensional inverse problems with classical initial, initial-boundary
and overdetermination conditions were investigated. The existence and uniqueness
theorems of inverse problem solutions were proved. The works [14]-[17] are devoted to
numerical methods for solving inverse problems of determining the kernel in integro-
differential equations of hyperbolic type. The papers present a numerically determining
the parameters of the memory function for a horizontally layered medium.

In molecular dynamics simulations, periodic boundary conditions are usually ap-
plied to calculate properties of liquids, crystals or mixtures. The periodic boundary
conditions arise from many important applications in life sciences. In [18]-[20], the
existence, uniqueness, and continuous data dependence of the solution were proven,
and numerical solutions to the diffusion problem with periodic boundary conditions
were developed.
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Results on inverse problems for the linear Moore-Gibson-Thompson (MGT) equa-
tion are available in literature. In [21], [22], the authors studied the inverse problems
for MGT equation in order to determine the space varying frictional damping term.
In the above papers, the Lipschitz stability for the inverse problem is obtained, and
a convergent algorithm for the reconstruction of the unknown coefficient is designed.
The techniques used due to Carleman inequalities for wave equations and properties of
the MGT equation. In the work [23], the kernel of the MGT equation with memory is
classified into 3 types. Then, authors study how a memory term creates damping mech-
anism and how the memory causes energy decay even in the cases when the original
memoryless system is unstable.

The main aim of this paper is to determine the convolution kernel of the MGT
model with memory of type 1 [23].

We consider the one-dimensional integro-differential MGT equation:

uttt + utt − uxxt − uxx +

t∫
0

g(t− τ)uxx(x, τ)dτ = 0, (x, t) ∈ ΩT , (1)

with initial

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), utt(x, 0) = φ(x), x ∈ [0, l], (2)

and periodic boundary conditions

u(0, t) = u(l, t), ux(0, t) = ux(l, t), t ∈ [0, T ], (3)

where ΩT = {(x, t) : 0 < x < l, 0 < t ≤ T} .
The problem of determining a function u(x, t) ∈ C2,3

x,t (ΩT )∩C1,2
x,t

(
ΩT

)
, that satisfies

(1)-(3) with known functions ϕ(x), ψ(x), φ(x) and g(t) will be called the direct problem.
In the inverse problem, it is required to determine the function g(t) using overde-

termination conditions about the solution of the direct problem (1)-(3):

l∫
0

η(x)u(x, t) dx = h(t), t ∈ [0, T ], (4)

where η(x) and h(t) are given functions.

Definition 1. The double of functions {u(x, t), g(t)} from the class C2,3
x,t (ΩT )∩C1,2

x,t

(
ΩT

)
×

C[0, T ] is said to be a classical solution of problem (1)-(4), if the functions u(x, t), g(t)
satisfy the following conditions:

1. the function u(x, t) and its derivatives uttt, utt, uxxt, uxx are continuous in the
domain ΩT ;

2. the function g(t) is continuous on the interval [0, T ];

3. equation (1) and conditions (2)-(4) are satisfied in the classical sense.
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Throughout this article, the functions ϕ, ψ, φ, η and h are assumed to satisfy the
following conditions:

(K1): ϕ(x) ∈ C2(0, l), ϕ′′′(x) ∈ L2(0, l), ϕ
(i)(0) = ϕ(i)(l), i = 0, 1, 2;

(K2): ψ(x) ∈ C2(0, l), ψ′′′(x) ∈ L2(0, l), ψ
(i)(0) = ψ(i)(l), i = 0, 1, 2;

(K3): φ(x) ∈ C1(0, l), φ′′(x) ∈ L2(0, l), φ
(i)(0) = φ(i)(l), i = 0, 1;

(K4): η(x) ∈ C1(0, l), η(0) = η(l) = 0, h(t) ∈ C4[0, T ];

(K5):
l∫
0

η(x)ϕ(x) dx = h(0),
l∫
0

η(x)ψ(x) dx = h′(0),
l∫
0

η(x)φ(x) dx = h′′(0);

(K6): ϕ0 :=
l∫
0

η(x)ϕ′′(x) dx 6= 0.

2 Classical solvability of inverse problem

In this section, we consider the problem of determining the unknown functions {u(x, t), g(t)}
from the integro-differential equation (1) with initial-boundary condition, and addi-
tional condition.

2.1 Equivalence of inverse problem

Now, to study the main problem (1)-(4), we consider the following auxiliary inverse
local initial and boundary value problem.

Lemma 2.1. Let (K1)-(K5) be held. Then the problem of finding a classical solution
of (1)-(4) is equivalent to the problem of determining the functions u(x, t) ∈ C2,3

x,t (ΩT )∩
C1,2
x,t

(
ΩT

)
and g(t) ∈ C[0, T ] satisfying (1)-(3) and

h′′′(t) + h′′(t)−
l∫

0

η(x)uxx(x, t)dx−
l∫

0

η(x)uxxt(x, t)dx

+

l∫
0

η(x)

t∫
0

g(t− s)uxx(x, s)dsdx = 0, t ∈ [0, T ]. (5)

Remark 1. From Lemma 2.1, we know that (1)− (3), (5)is an equivalent form of the
original inverse problem (1) − (4). So, in the next sections, we discuss (1) − (3), (5),
other than the original one.

Proof. Let {u(x, t), g(t)} be a solution of inverse problem (1)-(4). The solution
{u(x, t), g(t)} is also a solution to the problem (1)-(3), (5). We should show only (5).
Multiplying both sides of equation (1) by a function η(x) and integrating 0 to l with
respect to x gives

d3

dt3

l∫
0

η(x)u(x, t)dx+
d2

dt2

l∫
0

η(x)u(x, t)dx−
l∫

0

η(x)uxx(x, t)dx
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−
l∫

0

η(x)uxxt(x, t)dx+

l∫
0

η(x)

t∫
0

g(t− s)uxx(x, s)dsdx = 0, (6)

for all t ∈ [0, T ]. Using the condition h(t) ∈ C4[0, T ] and additional condition (4), we
get

d3

dt3

l∫
0

η(x)u(x, t) dx = h′′′(t),
d2

dt2

l∫
0

η(x)u(x, t) dx = h′′(t), t ∈ [0, T ]. (7)

Hence, from (6), taking into account (4) and (8), we arrive at (5).
Now we assume that {u(x, t), g(t)} satisfies (1)-(3), (5). In order to prove that

{u(x, t), g(t)} is the solution to the inverse problem (1)-(4), it suffices to show that
{u(x, t), g(t)} satisfied (5). From (5) and (6), we obtained following Cauchy problem{

y′′′(t) + y′′(t) = 0, t ∈ [0, T ],
y(i)(0) = 0, i = 0, 1, 2,

(8)

where y(t) =
l∫
0

η(x)u(x, t)dx− h(t).

It is easy to see that the solution to the problem (8) is only trivial, that is, y(t) ≡ 0,

for all t ∈ [0, T ], which implies
l∫
0

η(x)u(x, t)dx− h(t) ≡ 0, t ∈ [0, T ], i.e., the condition

(4) is satisfied.

2.2 Investigation of inverse problem

The use of the Fourier method for solving problem (1)-(3) leads to the spectral problem
for the operator given by the differential expression and boundary conditions

X ′′n(x) + λ2nXn(x) = 0, x ∈ (0, l), (9)

Xn(0) = Xn(l), X ′n(0) = X ′n(l), n = 0, 1, 2, ... (10)

In [24], it is known that the system of eigenfunctions

(1, X1n, X2n) = (1, cosλ1x, sinλ1x, cosλ2x, sinλ2x, . . . , cosλnx, sinλnx, . . .) , (11)

where λn = 2πn
l

(n = 0, 1, 2, 3, . . .), is a basis for L2(0, l). That is the system of eigen-
functions of spectral problem (9), (10).

Since the system (11) form a basis in L2(0, l), we shall seek the first component
classical solution {u(x, t), g(t)} of the problem (1)-(4) in the form

u(x, t) =
∞∑
n=0

u1n(t) cosλnx+
∞∑
n=1

u2n(t) sinλnx, (12)

where

u10(t) =
1√
l

l∫
0

u(x, t)dx, u1n(t) =

√
2

l

l∫
0

u(x, t) cosλnxdx,
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u2n(t) =

√
2

l

l∫
0

u(x, t) sinλnxdx, n = 1, 2, 3, . . .

Then, applying the formal scheme of the Fourier method for determining of unknown
coefficients u10(t) and uin(t) (i := 1, 2;n = 1, 2, . . .) of function u(x, t) from (1) and
(2), we find {

u′′′10(t) + u′′10(t) = 0, 0 ≤ t ≤ T,
u10(0) = ϕ10, u′10(0) = ψ10, u′′10(0) = φ10,

(13) u′′′in(t) + u′′in(t) + λ2nu
′
in(t) + λ2nuin(t) = λ2n

t∫
0

g(t− τ)uin(τ)dτ, 0 ≤ t ≤ T,

uin(0) = ϕin, u
′
in(0) = ψin, u

′′
in(0) = φin, i := 1, 2, n = 1, 2, . . .

(14)

where

f10 =
1√
l

l∫
0

f(x)dx, f1n =

√
2

l

l∫
0

f(x) cosλnxdx, f2n =

√
2

l

l∫
0

f(x) sinλnxdx,

for n = 1, 2, 3, . . . and f = ϕ, ψ, φ.
Solving the initial problem (13) we have

u10(t) = ϕ10 + tψ10 +
(
e−t + t− 1

)
φ10. (15)

Further, it is easy to note problems (14) are equivalent to the following Volterra-type
integral equations:

uin(t) =
1

λ2n + 1

[
λ2ne

−t + λn sinλnt+ cosλnt
]
ϕin

+
1

λn
sinλnt · ψin +

1

λ2n + 1

(
e−t +

1

λn
sinλnt− cosλnt

)
φin −

λ2n
λ2n + 1

×
t∫

0

τ∫
0

uin(s)g(τ − s)
(
eτ−t +

1

λn
sinλn(t− τ)− cosλn(t− τ)

)
ds dτ, n = 1, 2, 3, . . . .

(16)
Now, we differentiate equality (5) with respect to t and using equality (12), (16),

condition (K6) after simple converting, we obtain the following integral equation for
determining g(t) :

g(t) = Φ(t) +

∫ t

0

g(t− τ)G1(τ)dτ +

∫ t

0

∫ τ

0

g(τ − s)G2([u], t)dsdτ

+

∫ t

0

∫ τ

0

∫ s

0

g(t− τ)g(s− σ)G3([u], t)dσdsdτ, (17)

where

Φ(t) =
1

ϕ0

[
h(IV )(t) + h′′′(t) +

√
l

2

∞∑
n=1

λ3n (η1nϕ1n + η2nϕ2n) sinλnt

]
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− 1

ϕ0

√
l

2

∞∑
n=1

λ2n (η1nψ1n + η2nψ2n) (λn sinλnt− cosλnt)

− 1

ϕ0

√
l

2

∞∑
n=1

λ2n (η1nφ1n + η2nφ2n) cosλnt−
√
lη10 (ψ10 + φ10) ,

G1(t) =

√
l

ϕ0

η10
(
ψ10 +

(
−e−t + 1

)
φ10

)
+

1

ϕ0

√
l

2

∞∑
n=1

λ2n
λ2n + 1

(η1nϕ1n + η2nϕ2n)
[
−λ2ne−t + λ2n cosλnt− λn sinλnt

]
+

1

ϕ0

√
l

2

∞∑
n=1

λ2n (η1nψ1n + η2nψ2n) cosλnt

+
1

ϕ0

√
l

2

∞∑
n=1

λ2n
λ2n + 1

(η1nφ1n + η2nφ2n)
(
−e−t + cosλnt+ λn sinλnt

)
,

G2([u], t) =
1

ϕ0

∞∑
n=1

λ4n (η1nu1n + η2nu2n) cosλnt,

G3([u], t) =
1

ϕ0

∞∑
n=1

λ4n
λ2n + 1

(η1nu1n + η2nu2n)
[
−e−t + cosλnt+ λn sinλnt

]
.

Thus, the solution of problem (1)-(4) was reduced to the solution of systems (12),
(17) with respect to unknown functions u(x, t) and g(t).

The following lemma plays an important role in studying the uniqueness of the
solution to the problem (1)-(3), (5):

Lemma 2.2. If {u(x, t), g(t)} is any solution to problem (1)-(3), (5), then the func-
tions u10(t), uin(t), i = 1, 2 satisfy the system of (13), (14) on interval [0, T ], respec-
tively.

Remark 2. From Lemma 2.2 it follows that to prove the uniqueness of the solution of
problem (1)-(3), (5), it suffices to prove the uniqueness of the solution of system (12),
(17).

Let us consider the functional space B3
0,T that is introduced in the work [25], so

that B3
0,T is a set of all functions of the form (12) considered in ΩT . Moreover, the

functions u1n(t) (n = 0, 1, 2, . . .), u2n(t) (n = 1, 2, . . .) contained in sums of (12) are
continuously differentiable on [0, T ] and

JT (u) = ‖u10(t)‖C[0,T ] +

{
∞∑
n=1

(
λ3n‖u1n‖C[0,T ]

)2} 1
2

+

{
∞∑
n=1

(
λ3n‖u2n‖C[0,T ]

)2} 1
2

<∞.

The norm on the set JT (u) is given by:

‖u‖B3
0,T

= JT (u).
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Let E3
0,T denote the space consisting of the topological product B3

0,T ×C[0, T ], in which
the norm of the element {u, g} defined by the formula

‖{u, g}‖E3
0,T

= ‖u‖B3
0,T

+ ‖g‖C[0,T ].

It is known that the spaces B3
0,T and E3

0,T are Banach space [26].
Now, in the space E3

0,T consider the operator

Λ(u, g) = {Λ1(u, g); Λ2(u, g)} = {ũ; g̃} =

{
∞∑
n=1

ũ1n(t) cosλnx+
∞∑
n=1

ũ2n(t) sinλnx; g̃

}
,

where the functions ũ1n(t) (n = 0, 1, 2, ...), ũ2n(t) (n = 1, 2, ...) and g̃(t) are equal to
the right-hand sides of (15), (16) and (17), respectively.

Based on (15)-(17), by means of simple transformations we find

‖ũ10‖C[0,T ] ≤ |ϕ10|+ T |ψ10|+ T |φ10|, (18)(
∞∑
n=1

(
λ3n‖ũin‖C[0,T ]

)2) 1
2

≤ 4

(
∞∑
n=1

(
λ3n|ϕin|

)2) 1
2

+ 2

(
∞∑
n=1

(
λ2n|ψin|

)2) 1
2

+

(
∞∑
n=1

(λn|φin|)2
) 1

2

+ 2T 2‖g‖C[0,T ]

(
∞∑
n=1

(
λ3n‖uin‖C[0,T ]

)2) 1
2

, i = 1, 2, (19)

‖g̃‖C[0,T ] ≤
1

|ϕ0|
(
‖h‖C4[0,T ] + η10 (ψ10 + φ10)

)
+

√
l√

2|ϕ0|

2∑
i=1

(
∞∑
n=1

|ηin|2
) 1

2
(
∞∑
n=1

(
λ3n|ϕin|

)2) 1
2

+

√
2l

|ϕ0|

2∑
i=1

(
∞∑
n=1

|ηin|2
) 1

2

( ∞∑
n=1

(
λ3n|ψin|

)2) 1
2

+

(
∞∑
n=1

(
λ2n|φin|

)2) 1
2


+

2
√

2l

|ϕ0|
‖g‖C[0,T ]T

2∑
i=1

(
∞∑
n=1

|ηin|2
) 1

2

×

×

( ∞∑
n=1

(
λ2n|ϕin|

)2) 1
2

+

(
∞∑
n=1

(
λ2n|ψin|

)2) 1
2

+

(
∞∑
n=1

(λn|φin|)2
) 1

2


+

√
l

|ϕ0|
‖g‖C[0,T ]T

2

2∑
i=1

(
∞∑
n=1

(λn|ηin|)2
) 1

2
(
∞∑
n=1

(
λ3n|uin|

)2) 1
2

+

√
l

|ϕ0|
‖g‖2C[0,T ]

T 3

3

2∑
i=1

(
∞∑
n=1

|ηin|2
) 1

2
(
∞∑
n=1

(
λ2n|uin|

)2) 1
2

. (20)
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Due to the fulfillment of the conditions (K1)-(K6), the series in (19) and (20) with
ϕin, ψin, φin, ηin will be convergent. For example, for the first series on the right side
(19) it will be shown as follows:

(
∞∑
n=1

(
λ3n|ϕin|

)2) 1
2

=

 ∞∑
n=1

√2

l
λ3n

l∫
0

ϕ(x)

{
X1n(x)
X2n(x)

}
dx

2


1
2

≤

 ∞∑
n=1

√2

l

l∫
0

ϕ′′′(x)

{
X2n(x)
X1n(x)

}
dx

2


1
2

≤ ‖ϕ′′′(x)‖L2(0,l)
. (21)

For the other series, this is easily shown in the same way.
Applying estimates of the form (21) to (18)-(20), we get

‖ũ‖B3
0,T
≤ A1(T ) + C1(T )‖g‖C[0,T ]‖u‖B3

0,T
, (22)

‖g̃‖C[0,T ] ≤ A2(T ) +B(T )‖g‖C[0,T ] + C2(T )‖g‖C[0,T ]‖u‖B3
0,T

+D(T )‖g‖2C[0,T ]‖u‖B3
0,T
,

(23)
where

A1(T ) = |ϕ10|+ T |ψ10|+ T |φ10|+ 4‖ϕ′′′‖L2(0,l) + 2‖ψ′′‖L2(0,l) + ‖φ′‖L2(0,l);

A2(T ) =
1

|ϕ0|

(
‖h‖C4[0,T ] +

√
lη10 (ψ10 + φ10)

)
+

1

|ϕ0|
4
√
l‖η‖L2(0,l)

[
‖ϕ′′′‖L2(0,l) + ‖ψ′′′‖L2(0,l) + ‖φ′′‖L2(0,l)

]
;

B(T ) =
4
√

2lT

|ϕ0|
‖η‖L2(0,l)

(
‖ϕ′′‖L2(0,l) + ‖ψ′′‖L2(0,l) + ‖φ′‖L2(0,l)

)
;

C1(T ) = 2T 2; C2(T ) =
2
√
l

|ϕ0|
T 2‖η′‖L2(0,l); D(T ) =

1

|ϕ0|
T 3‖η‖L2(0,l).

It follows from the inequalities (22), (23) that

‖ũ‖B3
0,T

+ ‖g̃‖C[0,T ]

≤ A(T ) +B(T )‖g‖C[0,T ] + C(T )‖g‖C[0,T ]‖u‖B3
0,T

+D(T )‖g‖2C[0,T ]‖u‖B3
0,T
, (24)

where A(T ) = A1(T ) + A2(T ), C(T ) = C1(T ) + C2(T ).
Now we can prove the following theorem.

Theorem 2.1. Let the conditions (K1)-(K6) and

(A(T ) + 2)B(T ) <
2

3
, (A(T ) + 2)2C(T ) <

2

3
, (A(T ) + 2)3D(T ) <

2

3
(25)

be fulfilled. Then the problem (1)-(3), (5) has a unique solution in the ball S =
Sr

(
‖z‖E3

0,T
≤ r = A(T ) + 2

)
of the space E3

0,T .
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Proof. Let us denote z = {u(x, t), g(t)} and rewrite the system of equations (12),
(17) in the form of the following operator equation:

z = Λz, (26)

where Λ = (Λ1,Λ2)
T , Λ1 and Λ2 defined by the right sides of (12) and (17), respectively.

Analogously to (24) we obtain that for any z, z1, z2 ∈ Sr the following estimates
hold:

‖Λz‖E3
0,T
≤ A(T ) +B(T )‖g‖C[0,T ] + C(T )‖g‖C[0,T ]‖u‖B3

0,T
+D(T )‖g‖2C[0,T ]‖u‖B3

0,T

≤ A(T ) +B(T ) (A(T ) + 2) + C(T ) (A(T ) + 2)2 +D(T ) (A(T ) + 2)3 , (27)

‖Λz1 − Λz2‖E3
0,T
≤ 2C(T )r

(
‖g1 − g2‖C[0,T ] + ‖u1 − u2‖B3

0,T

)
+B(T )‖g1 − g2‖C[0,T ] + 3D(T )r2

(
‖g1 − g2‖C[0,T ] + ‖u1 − u2‖B3

0,T

)
. (28)

Then taking into account (25) in (27) and (28), it follows that the operator Λ acts in
the ball Sr and is contracted.

Therefore, in accordance with the Banach theorem (see [27], pp. 87-97), the op-
erator Λ has unique fixed point in the ball Sr; i.e., it is a unique solution in the ball
Sr.

In this way we conclude that the function u(x, t) as an element of space B3
T is

continuous and has continuous derivative uxx(x, t), in ΩT .
Calculating the first derivative of (15), (16) and after simple transformations we

find
‖u′10‖C[0,T ] ≤ |ψ10|+ |φ10|,(

∞∑
n=1

(
λ2n‖u′1n‖C[0,T ]

)2) 1
2

≤ 8

(
∞∑
n=1

(
λ2n|ϕ1n|

)2) 1
2

+ 4

(
∞∑
n=1

(
λ2n|ψ1n|

)2) 1
2

+8

(
∞∑
n=1

(λn|φ1n|)2
) 1

2

+ 4‖g‖C[0,T ]T
2

(
∞∑
n=1

(
λ3n‖u1n‖C[0,T ]

)2) 1
2

≤ 8‖ϕ′′‖L2(0,l) + 4‖ψ′′‖L2(0,l) + 8‖φ′‖L2(0,l) + 4T 2‖g‖C[0,T ]‖u‖B3
0,T
, i = 1, 2.

Similarly, we can calculate second derivative for (15), (16) as above estimate as, we
get

‖u′′10‖C[0,T ] = |φ10|,(
∞∑
n=1

(
λn‖u′′1n‖C[0,T ]

)2) 1
2

≤ 8
(
‖ϕ′′‖L2(0,l) + ‖ψ′′‖L2(0,l) + ‖φ′‖L2(0,l)

)
+ 4T 2‖g‖C[0,T ]‖u‖B3

0,T
, i = 1, 2.

From (13) and (14) it is easy to see that

‖u′′′10‖C[0,T ] = |φ10|,
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(
∞∑
n=1

(
‖u′′′in‖C[0,T ]

)2) 1
2

≤ 80
(
‖ϕ′′‖L2(0,l) + ‖ψ′′‖L2(0,l) + ‖φ′‖L2(0,l)

)
+16T

(
‖ϕ′′‖L2(0,l) + ‖ψ′′‖L2(0,l) + ‖φ′‖L2(0,l)

)
‖g‖C[0,T ]

+40T 2‖g‖C[0,T ]‖u‖B3
0,T

+ 8T 3‖g‖2C[0,T ]‖u‖B3
0,T
.

From the last relations, it is obvious that utt(x, t), uttt(x, t), uxxt(x, t), is continuous
in ΩT .

It is easy to verify that the equation (1) and conditions (2), (3), (5) are satisfied in
the usual sense.

Consequently, {u(x, t), g(t)} is a solution of (1) − (3), and (5) by Lemma 2.2 it is
unique.

Remark 3. Inequality (25) is satisfied for sufficiently small values of T ∈ (0, τ ], τ > 0.

Finally, from Lemma 2.1 and Theorem 2.1 immediately implies that the original
problem (1)− (4) has a unique classical solution.

Theorem 2.2. Suppose that all assumptions of Theorem 2.1 and Lemma 2.1 hold.
Then, for sufficiently small T problem (1)− (4) has a unique solution in the ball SR of
the space E3

0,T .

3 Main result and its proof

Now we will prove the theorem of global solvability for the inverse problem.

Theorem 3.1. Under hypotheses (K1)-(K6), there exists a unique solution {u(x, t), g(t)} ∈
E3

0,T of the inverse problem (1)-(3), (5) for any T > 0.

Proof. Theorem 2.2 ensure that there exist a unique solution
{
û(x, t),

ĝ(t)
}
∈ E3

0,τ to problem (1) − (3), (5) for sufficiently small τ > 0. Now we show that
the unique solution {û(x, t), ĝ(t)} in [0, τ ] can be extended to a larger time interval
(τ, 2τ).

Rewrite the system of (1)-(3), (5) as follows:

uttt(x, t) + utt(x, t)− uxxt(x, t)− uxx(x, t) +

∫ τ

0

ĝ(t− s)ûxx(x, s) ds

+

∫ t

τ

g(t− s)uxx(x, s) ds = 0, x ∈ (0, l), t ∈ (τ, T ), (29)

u(x, τ) = û(x, τ), ut(x, τ) = ût(x, τ),

utt(x, τ) = ûtt(x, τ), x ∈ [0, l], (30)

u(0, t) = u(l, t), ux(0, t) = ux(l, t), t ∈ [0, T ], (31)

and

h′′′(t) + h′′(t)−
l∫

0

η(x)
(
uxx(x, t) + uxxt(x, t)

)
dx
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+

l∫
0

η(x)

τ∫
0

ĝ(t− s)ûxx(x, s) ds dx

+

l∫
0

η(x)

t∫
τ

g(t− s)uxx(x, s)dsdx = 0, t ∈ (τ, T ). (32)

Obviously, if we prove that there exists a solution {u(x, t), g(t)} ∈ E3
τ,T with some

T ≤ 2τ , then {u(x, t), g(t)} defined by

{u(x, t), g(t)} =

{
{û(x, t), ĝ(t)}, t ∈ [0, τ ],
{u(x, t), g(t)} t ∈ [τ, 2τ ],

(33)

is a solution of the inverse problem (1)-(3) and (5) on the larger interval [0, 2τ ].
We repeat the Banach principle to prove the existence and uniqueness of {u, g}.

Define an operator
Λ : S̃ρ,T → E3

τ,T , (34)

where
S̃ρ,T =

{
(u, g) ∈ E3

τ,T : u(x, τ) = û(x, τ), ut(x, τ) = ût(x, τ),

utt(x, τ) = ûtt(x, τ), u(0, t) = u(l, t), ux(0, t) = ux(l, t),

(x, t) ∈ ΩT , ‖u‖B3
τ,T

+ ‖g‖C[τ,T ] ≤ ρ
}
,

here u is the unique solution of the initial and boundary value problem (29), (30), (31).
Furthermore, g is the solution of (32) in terms of u.

From (22), we know that the function û(x, t) belongs to class B3
0,τ in t ∈ [0, τ ].

Therefore, we can conclude that {û(·, τ), ût(·, τ)} ∈ C2[0, l], and ûtt(·, τ) ∈ C1[0, l]. In
addition, we should show that

{
ûxxx(·, τ), ûtxxx(·, τ), ûttxx(·, τ)

}
∈ L2(0, l). According

to Theorem 2.2 the function u(·, τ) the same as (12) at t ∈ [τ, T ]. Taking into account
(12), we get

‖ûxxx(·, τ)‖L2(0,l) ≤

(
∞∑
n=1

(
λ3n (û10 + û1n + û2n)

)2) 1
2

≤ δ1
(
‖ϕ′′′‖L2(0,l) + ‖ψ′′‖L2(0,l) + ‖φ′‖L2(0,l)

)
e3‖ĝ‖τ .

As a result of simple calculations, we obtain

‖ûtxxx(·, τ)‖L2(0,l) ≤

(
∞∑
n=1

(
λ3n (û′10 + û′1n + û′2n)

)2) 1
2

≤ δ2
(
1 + ‖ĝ‖τe3‖ĝ‖τ

)
e3‖ĝ‖τ

(
‖ϕ′′′‖L2(0,l) + ‖ψ′′′‖L2(0,l) + ‖φ′′‖L2(0,l)

)
e3‖ĝ‖τ .

As above, we get

‖ûttxx(·, τ)‖L2(0,l) ≤

(
∞∑
n=1

(
λ2n (u′′10 + u′′1n + u′′2n)

)2) 1
2
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≤ δ3
(
1 + (1 + τ)‖ĝ‖e3‖ĝ‖τ + ‖ĝ‖τ 2e3‖ĝ‖τ

(
1 + ĝτe3‖ĝ‖τ

))
×

×
(
‖ϕ′′′‖L2(0,l) + ‖ψ′′′‖L2(0,l) + ‖φ′′‖L2(0,l)

)
,

where δ1, δ2, δ3 are arbitrary positive real constants.
Further, by (22), (29), (30) and (31) for t ∈ [τ, T ], we have

‖u‖B3
τ,T
≤ τ‖û10‖C2[τ,T ] + 4‖ûxxx‖L2(0,l) + 2‖ûtxx‖L2(0,l)

+‖ûttx‖L2(0,l) + 2τ 2‖ĝ‖C[0,T ]‖û‖B3
0,T

+ 2 (T − τ)2 ‖g‖C[τ,T ]‖u‖B3
τ,T
. (35)

Besides, similarly as (23) and (32) for t ∈ [τ, T ]:

‖g‖C[τ,T ] ≤
1

|ϕ0|

(
‖h‖C[τ,T ] +

√
l|η10|‖û10‖C2[τ,T ]

)

+
4
√
l

|ϕ0|
‖η‖L2(0,l)

(
‖ûxxx(·, τ)‖L2(0,l) + ‖ûtxxx(·, τ)‖L2(0,l) + ‖ûttxx(·, τ)‖L2(0,l)

)
+

8
√
lτ

|ϕ0|
‖η‖L2(0,l)

(
‖ϕ′′‖L2(0,l) + ‖ψ′′‖L2(0,l) + ‖φ′‖L2(0,l)

)
‖ĝ‖C[0,T ]

+
8
√
l(T − τ)

|ϕ0|
‖η‖L2(0,l)

(
‖ûxx(·, τ)‖L2(0,l) + ‖ûtxx(·, τ)‖L2(0,l)

)
‖g‖C[τ,T ]

+
8
√
l(T − τ)

|ϕ0|
‖η‖L2(0,l)‖ûttx(·, τ)‖L2(0,l)‖g‖C[τ,T ]

+
2
√
l

|ϕ0|
‖η′‖L2(0,l)

(
τ 2‖ĝ‖C[0,T ]‖û‖B3

0,T
+ (T − τ)2‖g‖C[τ,T ]‖u‖B3

τ,T

)
+

1

|ϕ0|
‖η‖L2(0,l)

(
τ 3‖ĝ‖2C[0,T ]‖û‖B3

0,T
+ (T − τ)3‖g‖2C[τ,T ]‖u‖B3

τ,T

)
. (36)

So, taking into account (35), we get

‖u‖B3
τ,T
≤ δ4

(
1 + τ + τ 2 + (T − τ)2 ‖g‖C[τ,T ]‖u‖B3

τ,T

)
. (37)

On the other hand, by (36), it is true the estimate

‖g‖C[τ,T ] ≤ δ5

(
1 + τ + τ 2 + τ 3 + (T − τ)‖g‖C[τ,T ]

+(T − τ)2‖g‖C[τ,T ]‖u‖B3
τ,T

+ (T − τ)3‖g‖2C[τ,T ]‖u‖B3
τ,T

)
. (38)

where δ4 and δ5 are independent of T.
Using (37) and (38), we obtain

‖Λ(u, g)‖E3
τ,T
≤ δ4

(
1 + τ + τ 2

)
+ δ5

(
1 + τ + τ 2 + τ 3

)
+ δ5 (T − τ) ρ

+(δ4 + δ5) (T − τ)2 ρ2 + δ5 (T − τ)3 ρ3 = δ4 + δ5 + ζ(ρ, τ, T − τ), (39)
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where
ζ(ρ, τ, T − τ) = δ4

(
τ + τ 2

)
+ δ5

(
τ + τ 2 + τ 3

)
+δ5 (T − τ) ρ+ (δ4 + δ5) (T − τ)2 ρ2 + δ5 (T − τ)3 ρ3.

By similar calculations to (29), (30), (31) we have

‖Λ(u1, g1)− Λ(u2, g2)‖E3
τ,T
≤ δ5(T − τ)‖(u1 − u2, g1 − g2)‖E3

τ,T

+
(

(δ4 + δ5) ρ(T − τ)2 + δ5ρ
2(T − τ)3

)
‖(u1 − u2, g1 − g2)‖E3

τ,T
. (40)

It is easy to see that if we choose ρ ≥ r, then we could get T − τ ≤ τ to satisfy

δ4 + δ5 ≤
ρ

2
, ζ(ρ, τ, T − τ) ≤ ρ

2
.

Furthermore noticing that (39) and (28) have the same structure, we can choose T−τ =

τ to satisfy (39), which yields ‖Λ(u, g)‖ ≤ ρ i.e. Λ(u, g) ∈ S̃ρ,T .
Additionally,

‖Λ(u1, g1)− Λ(u2, g2)‖E3
τ,T

< ‖(u1 − u2, g1 − g2)‖E3
τ,T
,

for T = 2τ . This estimate show that Λ is a contraction map on S̃ρ,T for all T ∈ (τ, T ].
Repeating the extension process limited times, we could obtain a solution {u, g} ∈ E3

0,T

of the inverse problem (1)-(3) and (5) for any T.
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