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Abstract The paper proposes a non-iteration method for numerically solving the inverse
problem of identifying the coefficient of the right-hand side of the time-dependent fractional
diffusion equation. The redefinition condition for each t ∈ (0, T ] is given: the value of the
function at some internal point of the domain or the integral of the desired function in the
domain. The results of the numerical implementation of the proposed method on test problems
with exact solutions are presented.
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1 Introduction

In some cases, diffusion as a physical process is more accurately described by a partial
differential equation of fractional order. Theoretical results and numerical methods
for solving inverse initial-boundary value problems for differential equations are gen-
eralized in the monographs of Isakov, Prilepko and Cannon [1] – [3]. The study of
inverse problems for differential equations with fractional derivatives is in rapid devel-
opment, both in theoretical terms and in their applications, and has become a tool for
mathematical modeling of complex dynamic processes in various (ordinary and fractal)
environments, allowing to solve various problems of analysis and synthesis, diagnos-
tics, and the creation of new systems. The applied value of coefficient inverse problems
in this process is very significant, in fact, they represent an extensive class of inverse
problems.

Among the possible formulations of inverse problems with unknown coefficients in
a parabolic equation, a typical one is the problem [4], in which it is necessary to find
the unknown functions u(x, t), and as a special inverse problem, one can single out the
problem where it is necessary to find p(t) in the source function f(x, t) = p(t)ϕ(x).
Of interest here is the unknown time dependence of the source coefficient (right-hand
side) with a known spatial distribution.

An additional condition is specified as a function of time at an internal point or as
an integral average over the entire region. A fundamentally new method for finding
the coefficient was developed in [5] for a parabolic equation. The development of a
numerical algorithm for finding the lowest order coefficient in a parabolic equation is
often based on the idea of transforming the equation by introducing new unknowns
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and moving to a linear inverse problem. This article discusses this problem and this
approach as applied to anomalous diffusion. In the works [6] – [7] another direct
non-iteration method for determining the lowest coefficient was developed, which is
implemented at each time layer based on solving two standard grid elliptic problems.
A generalization of this approach and a numerical implementation of the computational
algorithm were carried out in the article [8], and the inverse problem of identifying the
time-dependent source coefficient was solved.

In [9], the work proposed a new analytical algorithm for highly nonlinear reaction-
diffusion equations with fractional time division. The proposed method is a combi-
nation of the Variational Iteration Method (VIM) and the Adomian Decomposition
Method (ADM) and is further improved by introducing a new correction functional.
The work [10] proposed discretization methods: direct recursive discretization of the
Tustin operator and a direct discretization method using the Al-Alawi operator via
continued fraction extension (CFE). Detailed sampling procedures are given.

The paper [11] constructed an effective numerical method for solving the inverse
problem for a parabolic equation with a fractional time derivative. An implicit finite
difference method is used to discretize the problem, and a conjugate gradient method
is proposed for the inverse problem.

In [12], the authors solved a nonlinear inverse problem to determine the time-
dependent convection coefficient in the subdiffusion equation from internal point mea-
surements for the one-dimensional case. The existence, uniqueness, and regularity of
the solution to the direct problem are proved using the fixed point theorem.

The paper [13] considered two inverse problems of recovering the coefficients of the
nonstationary one-dimensional diffusion-convection equation.

The work [14] considered the diffusion equation with a fractional time derivative in a
finite region. A computationally efficient implicit difference approximation is proposed
for solving the time fractional diffusion equation. In this paper, we present a numerical
solution to the inverse problem of determining the coefficient on the right side of the
subdiffusion equation under given additional conditions. It is assumed that the desired
factor of the coefficient is represented as a function that depends only on time, and
the other factor is a known function that depends on the spatial variable. The spatial
approximation is constructed by the finite difference method. The main features of
the linear inverse problem under consideration are taken into account when choosing
linearized approximations in time. Linear problems at the appropriate time level are
solved by applying a special decomposition and solving two standard elliptic problems.

2 Problem statement

Let us consider the inverse initial-boundary value problem for a linear one-dimensional
subdiffusion equation with a fractional time derivative of order α ∈ (0, 1), satisfying
the given homogeneous Dirichlet boundary conditions and having a source function
that is the product of two functions, one of which depends on time , and the other
from the spatial variable. Let the value of the desired function at a given internal point
of the region be specified as an additional condition.
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Thus, it is required to determine the functions u(x, t) and p(t) from the conditions:

∂αu

∂tα
=

∂2u

∂x2
+ p(t)f(x), 0 < x < l, 0 < t ≤ T,

u(0, t) = u(l, t) = 0, 0 < t ≤ T,

u(x, 0) = φ(x), 0 ≤ x ≤ l,

u(x∗, t) = ϕ(t), x∗ ∈ (0, l).

(1)

Here the functions f(x), φ(x), 0 ≤ x ≤ l and ϕ(t), 0 < t ≤ T are given.
The Caputo fractional derivative of order α is determined by the formula:

∂αu(x, t)

∂tα
=

1

Γ(1− α)

t∫
0

∂u(x, s)ds

∂t
(t− s)−α, (2)

where α ∈ (0, 1), Γ(·) is the gamma function.

3 Algorithm development and finite-difference analog of the
problem

We use the idea of P.N. Vabishchevich proposed in the work [5]. Let p(t) be differen-
tiable and integrable, and we can represent this function as p(t) = Dα

t (θ(t)), where θ(t)
is an auxiliary function. Let the function f(x) be twice differentiable and f(x∗) ̸= 0 at
a given point, f(x) = 0 on the boundary of the domain. We find a solution to problem
(1) in the form of

u(x, t) = θ(t)f(x) + ω(x, t). (3)

Then we obtain the following formulation of the problem for the functions θ(t), ω(x, t):

Dα
t (ω(x, t)) = θ(t)

∂2f(x)

∂x2
+

∂2ω(x, t)

∂x2
, 0 < x < l, 0 < t ≤ T,

ω(0, t) = ω(l, t) = 0, 0 < t ≤ T,

ω(x, 0) = φ(x), 0 ≤ x ≤ l,

ω(x∗, t) = ϕ(t)− θ(t)f(x∗), 0 < t ≤ T.

(4)

Let’s move on to constructing a difference analogue of the initial-boundary value
problem (4). To approximate the fractional Caputo derivative of order α in time on
a uniform time grid with a step τ = T/M , we use the discrete analogue of P. Zhuang
and F. Liu [14]:

∂αu(x, tj)

∂tα
= στα

j∑
k=1

sk(u
j−k+1
i − uj−k

i ), j = 1,M, i = 0, N,
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where

s1 = 1, sk = k1−α − (k − 1)1−α, k = 2, 3, . . . , j. στα =
1

Γ(2− α)τα
.

The same work shows that the error in the approximation of the fractional derivative
is of the order of O(τ 2−α). Let’s write down the sum for selecting layers:

Dα
t (ω(x, tj)) = στα

j∑
k=1

sk(ω
j−k+1
i − ωj−k

i ) = στα(ω
j
i − ωj−1

i +

j∑
k=2

sk(ω
j−k+1
i − ωj−k

i )).

Let us introduce the notation Φj−1 for the lower layers:

Φj−1 = −ωj−1
i +

j∑
k=2

sk(ω
j−k+1
i − ωj−k

i ).

We write the approximation of the second derivative in the form:

∂2f(x)

∂x2
+

∂2ω(x, t)

∂x2
=

fi−1 − 2fi + fi+1

h2
+

ωj
i−1 − 2ωj

i + ωj
i+1

h2
= Λf + Λωj,

Taking into account the introduced notations, the main equation of problem (4) will
take the form:

στα(ω
j
i + Φj−1) = θjΛf + Λωj. (5)

Using relation (3), we derive the function θ(t):

θ(t) =
u(x, t)− ω(x, t)

f(x)
=

u(x∗, t)− ω(x∗, t)

f(x∗)
=

ϕ(t)− ω(x∗, t)

f(x∗)
, (6)

Let us substitute the resulting expression for θ(t) into equation (5) and x∗ = xm:

σταω
j
i − Λωj +

ωj
mΛf

fm
=

ϕj

fm
Λf − σταΦ

j−1.

To exclude ωj
k, P.N. Vabishchevich proposed to use the method of decomposition of

the grid function ωj
j in the form ωj

i = yji + ωmz
j
i

σταy
j
i + σταω

j
mz − Λyj − ωj

mΛz
j +

ωj
mΛf

fm
=

ϕj

fm
Λf − σταΦ

j−1.

To make the following expressions easier to read, we denote the right side of the last
relation by gj−1

(σταy
j
i − Λyj − gj−1) + ωj

m(σταz
j
i − Λzj + Λf/fm) = 0,

since a sufficient condition for the sum of terms to be equal to zero is the equality of
the terms in brackets to zero, we have a system of linear equations to find yji , z

j
i :{

σταy
j
i − Λyj = gj−1,

σταz
j
i − Λzj = −Λf/fm.

(6)
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Thus, additional grid functions yi and zi are calculated from system (6). We define ωj
m

and ωj
i :

ωj
m =

yjm
1− zjm

, ωj
i = yji + ωmz

j
i .

Relation (3) will allow us to find θ(t) and u(x, t). Using the assumption p(t) =
Dα

t (θ(t)), we find the required function p(t).
To demonstrate the flexibility and universality of the decomposition method, we

present one more replacement:

ωj
i = yji + θ(t)zji , (7)

which we substitute into (5) and get:

σταy
j
i + σταθ

jzji − Λyj − θjΛzj − θjΛf = gj−1.

By analogy with (6), we obtain the system{
σταy

j
i − Λyj = gj−1

σταz
j
i − Λzj = Λf

(8)

Additional functions y and z are calculated from system (8). Now we can calculate
ωm, θ, ω

ωk = ym + θjzm, θj = (ωm − ϕj)/fm.

The calculation results are the same.
Let us consider the possibility of applying an integral additional condition. That

is, the additional condition is specified as an integral over the area:

l∫
0

u(x, t)dx = ϕ(t).

We have:
l∫

0

u(x, t)dx =

l∫
0

(θ(t)f(x) + ω(x, t))dx = θ(t)

l∫
0

f(x)dx+

l∫
0

ω(x, t))dx = ϕ(t),

let’s substitute from (7)

θ(t)

l∫
0

f(x)dx = ϕ(t)−
l∫

0

(y + θ(t)z)dx = ϕ(t)−
l∫

0

ydx− θ(t)

l∫
0

zdx,

from here:

θ(t) =

ϕ(t)−
N∑
i=0

yih

N∑
i=0

(fi + zi)h

.



88 Kardashevsky A.M., Popov V.V. , Guo Z.

4 Numerical experiments

We will carry out a numerical implementation of computational algorithms on a model
problem from [15], [16] with different conditions and different values of the fractional
time derivative exponent α and compare the obtained calculation results with the exact
solution.

Example 1. We consider the inverse problem with a smooth initial condition (1)
on the domains x ∈ [0, l] and t ∈ [0, T ] with different α = 0.1, 0.3, 0.5, 0.7, 0.9.
Design parameters for space: N = 100, 200; l = 1, for time: T = 1; M = 100, 200.
All input and output functions are known:

u(x, t) = t2sin(πx), f(x) = sin(πx), φ(x) = 0,

ϕ(t) = t2, p(t) =
Γ(3)t2−α

Γ(3− α)
+ t2π2.
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Figure 1: The error of finding the function p(t) at different α and when the redef-
inition function u(x∗, t) = ϕ(t), x∗ = l/2 at N = 100,M = 100. On the right at
N = 100,M = 200.

Figs. 1 and 2 present the results of the calculation according to the proposed
algorithm to illustrate the effect of grid shredding in space and time. As it turned out,
the accuracy is more influenced by the grinding in time. Fig. 3 shows an example when
the redefinition condition is integral over the domain. No significant improvement in
the result was found. In Fig. 4, the influence of the location of the selection of the point
at which the function of the additional condition is set is checked. At least for this
example, the impact is minimal. The same example is in the case when the redefinition
condition is set as an integral over the domain.

Example 2.
In Figs. 5 and 6, the test was carried out for the function from [16]. Interval in

time and an additional condition: integral of the function over the area. An inverse
problem with a smooth initial condition (1) is considered. Calculations were carried
out on the same area, the grid at α = 0.1, 0.3, 0.5, 0.7, 0.9, for N = 100, 200; M =
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Figure 2: The error of finding the function p(t) at different α and when the redef-
inition function u(x∗, t) = ϕ(t), x∗ = l/2 at N = 200,M = 200. On the right at
N = 200,M = 100.
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Figure 3: The error of finding the function p(t) at different α and when the redefinition

function
l∫
0

u(x, t)dx = ϕ(t), at N = 100,M = 100, 200.
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Figure 4: Error in finding the function p(t) = pt for α = 0.1 when the override function
u(x∗, t) = ϕ(t), x∗ = n ∗ h for n = 4, 20, 50, 100, N = 200,M = 200. p1 –found when
the override function is integral. p3–found when the override function is specified at
different points. On the right at α = 0.9.

100; M = 200; l = 1.; T = 15. Results are shown in Fig. 5, 6. All input and output
functions are known:

u(x, t) = sin(πx)sint, f(x) = sin(πx), φ(x) = 0,

l∫
0

u(x, t)dx = ϕ(t) = sint, p(t) = sin(t+ απ/2) + π2sint.
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Figure 5: The error of finding the function p(t) at different α and when the redefinition

function
l∫
0

u(x, t)dx = ϕ(t), at N = 100,M =100. On the right at N = 200,M = 100.

Conclusion

To numerically solve the inverse problem of identifying the factor of the right side of
the subdiffusion equation, the non-iteration decomposition method proposed in [5] is
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Figure 6: The error of finding the function p(t) at different α and when the redefinition

function
l∫
0

u(x, t)dx = ϕ(t), at N = 200,M =200. On the right at N = 100,M = 200.

used, which reduces to a system of elliptic linear differential equations. Reconstruction
of the function and calculation of the desired function of the multiplier on the right
side are performed with high accuracy. The results of the numerical implementation
of the proposed method are presented using model examples with exact solutions on
different spatial and temporal grids and the order of the fractional derivative with
respect to time. Calculations were carried out for cases where the additional condition
is presented as a function of time at the internal point and as an integral over the area.
Calculations showed a fairly high efficiency of the proposed method.
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