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Abstract We consider a mathematical model which describes the equilibrium of an elastic
body in contact with a deformable foundation. We describe the contact model and we establish
the existence of a unique weak solution to the problem. Then, we prove the continuous
dependence of the solution with respect to the data. Finally, we introduce a sequence of
regularized problems depending on a positive parameter for which we study the convergence
when the regularization parameter is very small.
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1 Introduction
Variational inequalities have been an interesting field of study for a long time. The
reason for this is the intensive development of applications of variational inequality in
many areas of engineering and economics field such as solid and fluid mechanics and
equilibrium problems. References in this subject are [1, 2, 6, 7, 9, 15, 21, 22, 24], for
instance. Numerical analysis of variational inequalities, including solution algorithms,
error estimates and numerical simulations, can be found in [4, 8, 10, 23, 25]. Some
results on optimal control of variational inequalities can be found in [5, 11, 14, 18, 19,
20].

In this paper we consider a mathematical model which describes the contact between
an elastic body and an obstacle. We assume that the foundation is made of a rigid
material covered by a deformable layer of thickness k and yield limit β. The body is
acted upon by body forces of density ϕ0 and by tractions of density ϕ2, which act on a
part of its boundary. The variational formulation of the model is in a form of an elliptic
variational inequality with unilateral constraints in which the data are the density of
applied forces ϕ = (ϕ0,ϕ2), the thickness k, the yield limit β and the friction bound
ξ. The aim of this paper is to study the continuous dependence of the solution with
respect to the data. Also, we introduce a regularized variational problem depending on
a positive parameter ρ, whose solution converges to the weak solution of our contact
problem when ρ tends to zero.

The paper is structured as follows. In Section 2 we describe the contact model and
prove its unique weak solvability, Theorem 2.1. In Section 3 we study the dependence
of the solution with respect to the density of applied forces, the unilateral constraints,



A regularized frictional contact problem with unilateral constraints 29

the yield limit of the obstacle and the friction bound, Theorem 3.1. Finally, in Section
4 we introduce and analyze a regularized problem and prove a convergence result.

2 The contact model

We consider an elastic body which occupies a bounded domain Ω ⊂ Rd (d = 1, 2, 3)
with a Lipschitz continuous boundary Γ, composed with three measurable disjoint parts
Γ1, Γ2 and Γ3 such that meas (Γ1) > 0. The body is fixed on Γ1 and surface tractions
of density ϕ2 is acted on Γ2. On Γ3, the body is in frictional contact with a rigid-
deformable obstacle, the so-called foundation. Denote by Sd the space of second-order
symmetric tensors on Rd. Then, the classical formulation of the contact problem is as
follows.

Problem Q. Find a displacement field u : Ω→ Rd and a stress field σ : Ω→ Sd such
that

σ = Aε(u) in Ω, (2.1)

Divσ +ϕ0 = 0 in Ω, (2.2)

u = 0 on Γ1, (2.3)

σν = ϕ2 on Γ2, (2.4)

uν ≤ k, σν + π ≤ 0,

(uν − k)(σν + π) = 0,

0 ≤ π ≤ β, π = β
u+
ν

|uν |
if uν 6= 0

 on Γ3, (2.5)

‖στ‖ ≤ ξ, στ = −ξ uτ
‖uτ‖

if uτ 6= 0 on Γ3. (2.6)

Now, we give a short description of the equations and boundary conditions of Prob-
lem Q. First, equation (2.1) represents the elastic constitutive law of the material in
which A is the elasticity operator. Equation (2.2) is the equation of equilibrium in
which ϕ0 denotes the density of body forces. Conditions (2.3), (2.4) represent the
displacement and traction boundary conditions, respectively.

Condition (2.5) is the contact condition with unilateral constraints which models the
contact with a foundation made of a rigid body covered by a layer made of rigid-elastic
material. Here and below, uν , uτ represent the normal and tangential components of
u on Γ given by uν = u · ν and uτ = u− uνν, respectively. Also, σν and στ represent
the normal and tangential stress on Γ, that is, σν = (σν) · ν and στ = σν − σνν.

Now, we present a description of the contact condition (2.5). Here k > 0, is a given
bound which represents the thickness of the deformable layer, β is a given function
which represents the yield limit of this layer and r+ denotes the positive part of r,
i.e., r = max {r, 0}. It can be derived in the following way. First, we assume that the
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penetration is limited by the bound k and, therefore, the normal displacement satisfies
the following inequality

uν ≤ k on Γ3. (2.7)
Next, we assume that σν has the following additive decomposition

σν = σ1
ν + σ2

ν on Γ3, (2.8)
where σ1

ν describes the reaction of the deformable layer and σ2
ν describes the reaction

of the rigid body. We assume that σ1
ν satisfies the condition

0 ≤ −σ1
ν ≤ β, −σ1

ν =

β if 0 < uν ,

0 if uν < 0,
(2.9)

on Γ3. Next, we assume that the part σ2
ν satisfies the Signorini condition in the form

with the gap k, i.e.,
σ2
ν ≤ 0, σ2

ν(uν − k) = 0 on Γ3. (2.10)
The Signorini contact conditions were considereded, for example, in [3, 4]. We denote
−σ1

ν = π and we use (2.8) to see that

σ2
ν = σν + π on Γ3.

Then, we substitute this equality in (2.10) and use (2.7), (2.9) to obtain the contact
condition (2.5).

Finally, (2.6) represents the contact with Coulomb’s friction law where ξ is a given
friction bound. Frictional contact problems, where considered, for example in [12, 13,
16, 18].

To provide the variational analysis of Problem Q, we need some notation and
preliminaries material. Here and below, the indices i, j run from 1 to d and the
summation convention over repeated indices is used. Moreover, an index that follows a
comma represents the partial derivative with respect to the corresponding component
of the spatial variable x = (xi). Also, ε and Div denote the deformation and the
divergence operators, respectively, i.e.,

ε(u) = (εij(u)), εij(v) =
1

2
(ui,j + uj,i), Divσ = (σij,j).

We recall that the inner products and norms on Rd and Sd are defined by

u · v = uivi , ‖v‖ = (v · v)
1
2 ∀u,v ∈ Rd,

σ · τ = σijτij , ‖τ‖ = (τ · τ )
1
2 ∀σ, τ ∈ Sd.

Everywhere in this paper, we use the standard notation for Sobolev and Lebesgue
spaces associated to Ω and Γ. In particular, we use the spaces H = L2(Ω)d, H2 =
L2(Γ2)d, L2(Γ3) and H1(Ω)d, endowed with their canonical inner products and associ-
ated norms. For an element v ∈ H1(Ω)d we sometimes write v for the trace γv ∈ L2(Γ)d

of v to Γ. In addition, we consider the following spaces

V = {v ∈ H1(Ω)d : v = 0 on Γ1 },
Q = {σ = (σij) : σij = σji ∈ L2(Ω) }.
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The spaces V and Q are real Hilbert spaces equipped with the inner products given by

(u,v)V =

∫
Ω

ε(u) · ε(v) dx, (σ, τ )Q =

∫
Ω

σ · τ dx.

The associated norms on these spaces are denoted by ‖·‖V and ‖·‖Q, respectively. Also,
recall that the completeness of the space V follows from the assumption meas (Γ1) > 0
which allows the use of Korn’s inequality.

We denote by 0V the zero element of V and, for a regular stress function σ, the
following Green’s formula holds∫

Ω

σ · ε(v) dx+

∫
Ω

Divσ · v dx =

∫
Γ

σν · v da ∀v ∈ H1(Ω)d. (2.11)

We also recall that there exists ctr > 0 which depends on Ω and Γ1 such that

‖v‖L2(Γ)d ≤ ctr‖v‖V for all v ∈ V. (2.12)

Inequality (2.12) represents a consequence of the Sobolev trace theorem.
In the study of the mechanical problem (2.1)−−(2.6), we assume that the elasticity

operator A satisfies the following conditions

(a) A : Ω× Sd → Sd.
(b) There exists LA > 0 such that
‖A(x, ε1)−A(x, ε2)‖ ≤ LA‖ε1 − ε2‖
∀ ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(c) There exists mA > 0 such that
(A(x, ε1)−A(x, ε2)) · (ε1 − ε2) ≥ mA ‖ε1 − ε2‖2

∀ ε1, ε2 ∈ Sd, a.e. x ∈ Ω.
(d) The mapping x 7→ A(x, ε) is measurable on Ω,

for any ε ∈ Sd.
(e) The mapping x 7→ A(x,0) belongs to Q.

(2.13)

We also assume that the densities of body forces and tractions satisfy

ϕ0 ∈ H, (2.14)
ϕ2 ∈ H2. (2.15)

Finally, the yield limit β, the friction bound ξ and the thickness k satisfy the following
conditions

β ∈ L2(Γ3), β(x) ≥ 0 a.e. x ∈ Γ3, (2.16)
ξ ∈ L2(Γ3), ξ(x) ≥ 0 a.e. x ∈ Γ3, (2.17)
k > 0. (2.18)

Under these assumptions we introduce the set U ⊂ V , the operator A : V → V and
the function j : V → R defined by
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U = {v ∈ V : vν ≤ k a.e. on Γ3 }, (2.19)

(Au,v)V =

∫
Ω

Aε(u) · ε(v) dx ∀u, v ∈ V, (2.20)

j(v) = (β, v+
ν )L2(Γ3) + (ξ, ‖uτ‖)L2(Γ3) ∀ v ∈ V. (2.21)

Then, following a standard approach based on Green formula (2.11), we can derive
the following variational formulation of Problem Q.

Problem QV . Find a displacement field u ∈ U such that

(Au,v − u)V + j(v)− j(u) (2.22)
≥ (ϕ0,v − u)H + (ϕ2,v − u)H2 ∀v ∈ U.

In the study of this problem, we have the following existence and uniqueness result.

Theorem 2.1. Assume that (2.13)–(2.18) hold. Then, Problem QV has a unique
solution u ∈ U .

Proof. First, we use the definition (2.19)to see that U is a nonempty, closed and convex
subset of V .

Next, we use the definition (2.20)and assumption (2.13)(c) to see that

(Au− Av,u− v)V ≥ mA ‖u− v‖2
V ∀u, v ∈ V. (2.23)

On the other hand, assumption (2.13)(b) implies that

‖Au− Av‖V ≤ LA ‖u− v‖V ∀u, v ∈ V. (2.24)

We conclude from inequalities (2.23) and (2.24) that A is a strongly monotone Lipschitz
continuous operator on the space V .

Moreover, using (2.16) − −(2.17) and (2.12) it is easy to see that the functional j
defined by (2.21) is a seminorm on the space V and, in addition,

j(v) ≤ ctr(‖β‖L2(Γ3) + ‖ξ‖L2(Γ3))‖v‖V ∀v ∈ V.

It follows from here that j is a continuous seminorm and, therefore, it is convex and
lower semicontinuous.

Finally, by the Riesz representation theorem, we deduce that there exists a unique
element ϕ ∈ V such that

(ϕ,v)V = (ϕ0,v)H + (ϕ2,v)H2 ∀v ∈ V.

Theorem 2.1 now is a direct consequence of Theorem 2.8 in [24].
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3 Continuous dependence result

In this section, we study the dependence of the solution u of the variational inequality
(2.22) with respect to the data ϕ0, ϕ2, β, ξ and k. For each ε > 0, we consider a
perturbation ϕ0ε, ϕ2ε, βε, ξε and kε of ϕ0, ϕ2, β, ξ and k, respectively, which satisfy
(2.14) − −(2.18). Next, we introduce the set Uε ⊂ V and the functional jε : V → R
defined by

Uε = {v ∈ V : vν ≤ kε a.e. on Γ3 }, (3.1)

jε(v) = (βε, v
+
ν )L2(Γ3) + (ξε, ‖vτ‖)L2(Γ3) ∀ v ∈ V, (3.2)

and, we consider the following variational problem.

Problem QεV . Find a displacement field uε ∈ Uε such that

(Auε,v − uε)V + jε(v)− jε(uε)

≥ (ϕ0ε,v − uε)H + (ϕ2ε,v − uε)H2 ∀v ∈ Uε. (3.3)

It follows from Theorem 2.1 that, for each ε > 0, Problem QεV has a unique solution
uε ∈ Uε. The main result of this section is the following.

Theorem 3.1. Assume that

(ϕ0ε,ϕ2ε) ⇀ (ϕ0,ϕ2) in H ×H2 as ε→ 0, (3.4)

(ξε, βε)→ (ξ, β) in L2(Γ3)2 as ε→ 0, (3.5)

kε → k as ε→ 0. (3.6)

Then, the solution uε of Problem QεV converges to the solution u of Problem QV , i.e.,

uε → u in V as ε→ 0. (3.7)

The proof of Theorem 3.1 will be carried out in several steps. Let ε > 0. We start
by considering the intermediate problem of finding an element ūε ∈ U such that the
below inequality holds

(Aūε,v − ūε)V + jε(v)− jε(ūε)
≥ (ϕ0ε,v − ūε)H + (ϕ2ε,v − ūε)H2 ∀v ∈ U. (3.8)

It follows from Theorem 2.1 that the inequality (3.8) has a unique solution ūε ∈ U .
The first step is provided by the following weak convergence result.

Lemma 3.1. The sequence {ūε} converges weakly in V to u, that is

ūε ⇀ u in V as ε→ 0. (3.9)
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Proof. Let ε > 0. We test in (3.8)with v = 0V to obtain that

(Aūε, ūε)V + jε(ūε) ≤ (ϕ0ε, ūε)H + (ϕ2ε, ūε)H2 .

We now write Aūε = Aūε − A0V + A0V and we use the property (2.23) and the
positivity of the functional jε to see that

mA‖ūε‖V ≤ ‖ϕ0ε‖H + ‖ϕ2ε‖H2 + ‖A0V ‖V .

On the other hand, we use the convergence (3.4) to deduce that the sequences {ϕ0ε},
{ϕ2ε} are bounded in H and H2, respectively. Therefore, there exists a constant C > 0,
which does not depend on ε, such that

‖ūε‖V ≤ C. (3.10)

Thus, a standard compactness argument implies that there exists an elements ū ∈ V
such that, passing to a subsequence, again denoted {ūε}, we have

ūε ⇀ ū in V as ε→ 0. (3.11)

We shall prove the equality ū = u. To this end, we recall that U is a closed convex
subset of the space V and, therefore, the property {ūε} ⊂ U and the convergence (3.11)
imply that

ū ∈ U. (3.12)
Let ε > 0. We test in (3.8) with v = ū ∈ U to see that

(Aūε, ūε − ū)V ≤ (ϕ0ε, ūε − ū)H + (ϕ2ε, ūε − ū)H2 + jε(ū)− jε(ūε),

then we pass to the upper limit as ε → 0 in this inequality, using the convergences
(3.4)−−(3.5), (3.11) and the compactness of the trace operator, we obtain that

lim
ε→0

sup (Aūε, ūε − ū)V ≤ 0.

Therefore, using (2.23)−−(2.24), the convergence (3.11) and standard arguments on
pseudomonotone operators, we deduce that

lim
ε→0

inf (Aūε, ūε − v)V ≥ (Aū, ū− v)V ∀v ∈ U. (3.13)

On the other hand, using inequality (3.8)and the convergences (3.4)−−(3.5), (3.11)
and the compactness of the trace operator, we obtain that, for all v ∈ U ,

lim
ε→0

inf (Aūε, ūε − v)V ≤ (ϕ0, ū− v)H + (ϕ2, ū− v)H2 + j(v)− j(ū).

We combine now this inequality and (3.13) to see that, for all v ∈ U ,

(Aū,v − ū)V + j(v)− j(ū) ≥ (ϕ0,v − ū)H + (ϕ2,v − ū)H2 . (3.14)

Finally, it follows from (3.12) and (3.14) that ū is a solution of inequality (2.22)
and, by the uniqueness of the solution of this inequality, guaranteed by Theorem 2.1, we
deduce that the equality ū = u holds. By applying a standard compactness argument,
we obtain that the whole sequence {ūε} converges weakly in V to u as ε → 0, which
concludes the proof.
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We proceed with the following strong convergence result.
Lemma 3.2. The sequence {ūε} converges strongly in V to u, that is

ūε → u in V as ε→ 0. (3.15)
Proof. Let ε > 0. We write inequality (3.8) with v = u ∈ U and we use the strong
monotonicity of the operator A to see that

mA ‖ūε − u‖2
V ≤ (Aūε − Au, ūε − u)V

= (Aūε, ūε − u)V − (Au, ūε − u)V

≤ (ϕ0ε, ūε − u)H + (ϕ2ε, ūε − u)H2 + jε(u)− jε(ūε)− (Au, ūε − u)V .

We now pass to the limit in this inequality and use the convergences (3.4)−−(3.5), (3.9)
and the compactness of the trace operator to deduce that

‖ūε − u‖V → 0 as ε→ 0,

which concludes the proof.

We now have all the ingredients to provide the proof of Theorem 3.1.

Proof. Let ε > 0. We denote by κ =
k

kε
and κε =

kε
k
. By using the definitions

(2.19)and(3.1) of the sets U and Uε, respectively, we have that κuε ∈ U and κεūε ∈ Uε.
Now, we take v = κuε ∈ U in (3.8) and multiply the resulting inequality by κε to

obtain that

(Aūε,uε − κεūε)V + κεjε(κuε)− κεjε(ūε)

≥ (ϕ0ε,uε − κεūε)H + (ϕ2ε,uε − κεūε)H2 (3.16)
On the other hand, we take v = κεūε ∈ Uε in (3.3) to find that

(Auε, κεūε − uε)V + jε(κεūε)− jε(uε)

≥ (ϕ0ε, κεūε − uε)H + (ϕ2ε, κεūε − uε)H2 (3.17)
Next, adding the inequalities (3.16) − −(3.17) and using the linearity property of the
integral, we obtain that

0 ≤ (Aūε − Auε,uε − κε ūε)V .
Next, we use (3.10) and the properties (2.23)−−(2.24) to obain that

‖ūε − uε‖V ≤
LAC|1− κε|

mA
. (3.18)

Therefore, by using the convergence (3.6) we deduce that

‖ūε − uε‖V → 0 as ε→ 0. (3.19)
Finally, we use the triangle inequality, the convergences (3.15)and(3.19) to obtain that
the convergence (3.7) holds, which concludes the proof of Theorem 3.1.

In addition to the mathematical interest in the convergence result in Theorem 3.1,
it is important from mechanical point of view, since it states that the weak solution of
Problem Q depends continuously on the data.
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4 A regularized problem
In this section, we introduce a regularized problem by replacing the functional j, given
by (2.21), with a sequence of functions more regular. We investigate the unique solv-
ability of the regularized problem and we establish the convergence of the sequence of
the solutions when the regularization parameter ρ tends to zero.

Let ρ > 0. We define the functional jρ : V → R as follows

jρ(v) =

∫
Γ3

βφ1ρ(vν) da+

∫
Γ3

ξφ2ρ(‖vτ‖) da ∀ v ∈ V, (4.1)

where φ1ρ : R→ R+ and φ2ρ : R→ R+ are the differentiable functions defined by

φ1ρ(x) =

{√
x2 + ρ2 − ρ if x > 0,

0 if x ≤ 0,
(4.2)

and
φ2ρ(x) =

√
x2 + ρ2 − ρ ∀x ∈ R, (4.3)

and, we state the following variational problem.

Problem QρV . Find a displacement field uρ ∈ U such that

(Auρ,v − uρ)V + jρ(v)− jρ(uρ)
≥ (ϕ0,v − uρ)H + (ϕ2,v − uρ)H2 ∀v ∈ U. (4.4)

We have the following existence and uniqueness result.

Theorem 4.1. Assume that (2.13)–(2.18) hold. Then, Problem QρV has a unique
solution uρ ∈ U .

Proof. Let ρ > 0. Note that for all v ∈ V , we have

|φ1ρ(vν)| ≤ |vν |, (4.5)

and
|φ2ρ(‖vτ‖)| ≤ ‖vτ‖. (4.6)

Indeed, consider vν ≤ 0, it follows from definition (4.2) that inequality (4.5) is always
satisfied. Next, if vν > 0, we note that

φ1ρ(vν) =
√
v2
ν + ρ2 − ρ =

v2
ν√

v2
ν + ρ2 + ρ

on Γ3.

By using the following inequality
vν√

v2
ν + ρ2 + ρ

≤ 1 on Γ3,

we deduce that inequality (4.5) holds. Using similar arguments, we have that

φ2ρ(‖vτ‖) =
√
‖vτ‖2 + ρ2 − ρ =

‖vτ‖2√
‖vτ‖2 + ρ2 + ρ

on Γ3.
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Next, by using the inequality

‖vτ‖√
‖vτ‖2 + ρ2 + ρ

≤ 1 on Γ3,

we deduce that inequality (4.6) holds, too.
Considering now the functional jρ defined by (4.1) and using(2.12), (2.16)−−(2.17)

and (4.5)−−(4.6), we see that jρ is a seminorm on V and, in addition, it satisfies

jρ(v) =

∫
Γ3

βφ1ρ(vν) da+

∫
Γ3

ξφ2ρ(‖vτ‖) da

≤
∫

Γ3

β|vν |da+

∫
Γ3

ξ‖vτ‖ da

≤ ctr(‖β‖L2(Γ3) + ‖ξ‖L2(Γ3))‖v‖V ∀ v ∈ V.

It follows that jρ is a continuous seminorm and, therefore, it is a convex and lower
semicontinuous function. Then, with the same arguments used in the proof of Theorem
2.1, Problem QρV has a unique solution uρ ∈ U .

In the next part of this section, we deliver the following convergence result.

Theorem 4.2. The solution of Problem QρV converges to the solution of Problem QV ,
that is

uρ → u in V as ρ→ 0. (4.7)

Proof. Let ρ > 0. We take v = uρ ∈ U in (2.22) and v = u ∈ U in (4.4), then we add
the resulting inequalities and we use the strong monotonicity of the operator A to find
that

mA ‖uρ − u‖2
V ≤ (Auρ − Au,uρ − u)V

≤ j(uρ)− j(u) + jρ(u)− jρ(uρ)

≤ |jρ(uρ)− j(uρ)|+ |jρ(u)− j(u)|

≤ |
∫

Γ3

β
(
φ1ρ(uρν)− u+

ρν

)
da|+ |

∫
Γ3

ξ (φ2ρ(‖uρτ‖)− ‖uρτ‖) da|

+ |
∫

Γ3

β
(
φ1ρ(uν)− u+

ν

)
da|+ |

∫
Γ3

ξ (φ2ρ(‖uτ‖)− ‖uτ‖) da|. (4.8)

Note that

|φ1ρ(uν)− u+
ν | =

{
|
√
u2
ν + ρ2 − ρ− uν | = ρ+ uν −

√
u2
ν + ρ2 if uν > 0,

0 if uν ≤ 0,

on Γ3. It is easy to see that

ρ+ uν −
√
u2
ν + ρ2 ≤ ρ on Γ3,
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which implies that
|φ1ρ(uν)− u+

ν | ≤ ρ on Γ3. (4.9)
Similar arguments show that

|φ1ρ(uρν)− u+
ρν | ≤ ρ on Γ3. (4.10)

Moreover, note that

|φ2ρ(‖uτ‖)− ‖uτ‖| = ρ+ ‖uτ‖ −
√
‖uτ‖2 + ρ2

≤ ρ on Γ3, (4.11)

and,

|φ2ρ(‖uρτ‖)− ‖uρτ‖| = ρ+ ‖uρτ‖ −
√
‖uρτ‖2 + ρ2

≤ ρ on Γ3. (4.12)

Finally, we combine (4.8)−−(4.12) to obtain that

‖uρ − u‖2
V ≤

2ρ

mA

(∫
Γ3

β da+

∫
Γ3

ξ da

)
≤ 2ρ

mA
(‖β‖L2(Γ3) + ‖ξ‖L2(Γ3))

√
meas(Γ3).

It follows from this inequality that the convergence (4.7) holds, when ρ → 0, which
concludes the proof.

The convergence (4.7) is important from the mechanical point of view, since it
shows that the weak solution of the elastic frictional contact problem with unilateral
constraints may be approached as closely as one wishes by the solution of an elastic
frictional contact problem with unilateral constraints and regularized friction, with a
sufficiently small regularization parameter.
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