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Abstract The radiation �eld of a laser (a collimated laser beam) in a bounded domain is

considered. The paper concerns reconstruction of this �eld from measurements made on a

part of the domain boundary. The relevant model problem of the physical system is described

by the Cauchy problem for the Helmholtz equation on a rectangle in the case when noisy data

are given on one side of the rectangle only. In the general case when the beam is not axially

symmetric, a convergent series representation of the solution is derived. This representation

is the starting point for formulation of di�erent regularization methods. An example of a

spectral type regularization method is formulated and analyzed. An error bound for the

method is presented.
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1 Introduction

In optoelectronics, determination of the radiation �eld surrounding a source of radiation
(e.g. a laser or a light emitting diode) is a problem of frequent occurrence. As a rule,
experimental determination of the whole radiation �eld is not possible. Practically, we
are able to measure the electromagnetic �eld only on some subset of physical space
(e.g. on some surfaces). So, the problem arises how to reconstruct the radiation �eld
from such experimental data (see for instance [3, 17]).

Let us consider collimated light beams generated by some sources. In this case the
sources generate the electromagnetic �eld in the whole space R3 outside of the sources,
but �eld values become very small, practically vanish far from the beam axis.

We consider a simpli�ed mathematical model (for a stationary case) in which each
component of the �eld in an open bounded domainD outside of the sources is a solution
of the Helmholtz equation

∆u+ k2u = 0 in D, (1)

with a given real wave number k. The problem consists in reconstruction of the solution
u of (1) in a subdomain Ω ⊂ D from measurement data, i.e. from inexact values of u and
its normal derivatives given on Γ ⊂ ∂Ω, Γ ̸= ∂Ω. The above-mentioned problem is an
example of the ill-posed Cauchy problems for elliptic equations. In the recent literature
many aspect of regularizing these problems with noisy data have been studied. For an
overview see e.g. [1, 5, 6, 8]
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For simplicity we restrict our consideration to the case of rectangular domain Ω
in R2 where the solution of the Helmholtz equation has to be reconstructed. The
obtained results can also be extended to the case of a cuboid. With respect to real
experiments for a collimated laser beam it is reasonable to assume that measurement
data are given only on the one side of rectangle (cuboid) most distant from the sources.
This is the main di�erence between this paper and previous ones, cf. [4, 10, 11, 21]
where additional homogeneous or periodic boundary conditions are assumed on the
sides parallel to the beam axis. However, the homogeneous boundary conditions have
no clear physical meaning, and periodic boundary conditions can be applied only in
the case of symmetric beams. The model considered in this paper is more general.

In [7, 15, 16, 19, 20] the Cauchy problem for the Helmholtz equation (1) was consid-
ered on the in�nite strip R2 × (0, d) (or R× (0, d)) with data given on a one strip side.
The approach applied there consisted in application of Fourier transform with respect
to the two variables in R2 (or the one variable in R) which yields to the equivalent
formulation of the problem in the form of an operator equation in the frequency space.
It was shown in [16] that some spectral type methods give the optimal or order optimal
error bounds on certain source sets. This approach cannot be directly applied for the
case of rectangle or cuboid because the related Fourier series are not termwise di�er-
entiable (as it is in the case of homogeneous boundary conditions on the sides parallel
to the beam axis). However, using the idea described in [12, 9], we replace the nonho-
mogeneous boundary value problem by the auxiliary one such that the eigenfunction
expansion method can be applied for it. This yields to the in�nite system of di�erential
equations which is satis�ed by the Fourier coe�cients of the solution expansion.

In Section 2 we derive a series representation of the solution which is the starting
point to formulation of di�erent regularization methods. An example of a spectral
type regularization method is formulated in Section 3. Error bounds for regularized
solutions are obtained. These estimations depend on the regularization parameter, a
measurement error and a priori bounds for certain norms of the solution trace on the
rectangle sides where no measurements exist.

2 Cauchy problem on a rectangle

Let us consider the two dimensional model problem presented schematically on Fig.(1).
Assume that u ∈ H2(D) satis�es the Helmholtz equation on an open domain D ⊂ R2.
Measurements are available on Γ = (0, a)× {0} ⊂ D. Let g and h be the exact values
of the solution u and its derivative ∂u

∂y
on the set Γ. Therefore, u is also a solution of

the Cauchy problem on Ω = (0, a)× (0, b) ⊂ D{
∆u+ k2u = 0, in Ω ;
u(x, 0) = g(x); uy(x, 0) = h(x), x ∈ (0, a).

(2)

The problem (2) is ill posed in L2(Ω): the solution does not depend continuously
on the boundary data and it is also possible that no solution exists even for arbitrary
smooth functions g̃ ∼ g, h̃ ∼ h. However, if g, h determine a solution of (2), then they
determine exactly one solution (see [8], Chapter 3). This uniqueness result is shown
in [2], Theorem 4.1, for the case of an arbitrary Lipschitz domain in Rd under the
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Figure 1: Scheme of the model problem with measurements available on Γ only

assumption, that ∃z ∈ Γ and ∃r > 0 such that Γ ⊃ B(z, r)∩ ∂Ω where B(z, r) denotes
the ball with the center z and the radius r.

Problem P1. Given noisy data gδ(x) and hδ(x) on Γ satisfying

∥g − gδ∥L2(0,a) ≤ δ, ∥h− hδ∥L2(0,a) ≤ δ (3)

for a given data error bound δ. For any �xed y ∈ (0, b] �nd a function uδ(·, y) ∈ L2(0, a)
which is an approximation of the exact solution u(·, y) for (2).

Let Γ1 := {0} × (0, b), Γ2 := {a} × (0, b) and fi := u|Γi
, i = 1, 2. We make the

following assumptions on the problem under consideration

A1 : The exact solution u is small on Γ1, Γ2, i.e. ∃ε

∥fi∥H2(0,b) ≤ ε, i = 1, 2; (4)

A2 : A constant M <∞ is known such that

∥u′x(·, b)∥L2(0,a) ≤M (5)

2.1 Auxiliary problem

Let us consider the following auxiliary problem:
∆u+ k2u = 0, in Ω;

u(x, 0) = g̃(x); uy(x, 0) = h̃(x), x ∈ (0, a) ;
u(0, y) = 0, u(a, y) = 0, y ∈ (0, b).

(6)
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Let the functions g̃ and h̃ be such that the solution ũ of (6) exists in H2(Ω). Using the
method of separation of variables we easily �nd

ũ(x, y) =
∞∑
n=1

Un(y) sin
nπx

a
(7)

where

Un(y) =

{
g̃n cosh yζn +

1
ζn
h̃n sinh yζn, if n ̸= ak

π
;

g̃n + h̃ny, if n = ak
π
.

(8)

and ζn :=
√

n2π2

a2
− k2, g̃n and h̃n denote the Fourier coe�cients of the odd 2a- periodic

functions equal to g̃ and h̃ on the interval (0, a), respectively.
For simplicity we will assume subsequently that a ̸= nπ

k
.

2.2 Series representation in general case

Problem (2) is equivalent to
∆u+ k2u = 0, in Ω ;
u(x, 0) = g(x); uy(x, 0) = h(x), x ∈ (0, a);
u(0, y) = f1(y);u(a, y) = f2(y), y ∈ (0, b).

(9)

with unknown data f1 and f2.
In order to use the variable separation and the eigenfunction expansion methods,

as it was done for (6), we reduce the nonhomogeneous boundary conditions to the
homogeneous case (cf. [12], [9], sec.6.6). We choose P as an interpolating polynomial
with respect to x, i.e. P (x, y) = p0(y) + p1(y)x and P (0, y) = f1(y), P (a, y) = f2(y).
Thus

P (x, y) = f1(y) +
f2(y)− f1(y)

a
x. (10)

Clearly, if u is a solution to (2), then the function

v(x, y) := u(x, y)− P (x, y) (11)

is a solution to the following initial boundary value problem
∆v + k2v = ψ, in Ω ;
v(x, 0) = g(x)− P (x, 0); vy(x, 0) = h(x)− Py(x, 0), x ∈ (0, a);
v(0, y) = v(a, y) = 0, y ∈ (0, b),

(12)

where
ψ(x, y) = ψ0(y) + ψ1(y)x, (13)

ψ0(y) = −f ′′

1 (y)− k2f1(y), ψ1(y) =
f

′′
1 (y)− f

′′
2 (y)

a
+ k2

f1(y)− f2(y)

a
.

Let
fi,0 := lim

y→0
fi(y), fi,1 := lim

y→0
f

′

i (y), i = 1, 2.
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Theorem 2.1. If u ∈ H2(D) and u|Ω is the solution to (9), then for any �xed y ∈ (0, b)
u has the following convergent representation twice di�erentiable term by term

u(x, y) = P (x, y) +
∞∑
n=1

Vn(y) sin
nπx

a
, (14)

with P given by (10) and

Vn(y) = g̃n cosh yζn +
h̃n
ζn

sinh yζn +
1

ζn

∫ y

0

sinh((τ − y)ζn)φn(τ)dτ, (15)

where

ζn :=

√
n2π2

a2
− k2, φn =

2a

nπ

(
(−1)n+1(ψ0 + ψ1) + ψ0

)
,

g̃n = gn −
2

nπ

(
f1,0 + f2,0(−1)n+1

)
, h̃n = hn −

2

nπ

(
f1,1 + f2,1(−1)n+1

)
,

and gn, hn are Fourier coe�cients of the odd 2a periodic functions equal to g and h
on (0, a).

Proof. We split (12) into the well posed nonhomogeneous Dirichlet problem
∆s+ k2s = ψ,
s(x, 0) = sy(x, b) = 0,
s(0, y) = s(a, y) = 0,

(16)

and the ill-posed Cauchy problem
∆w + k2w = 0,

w(x, 0) = g̃(x), wy(x, 0) = h̃1(x),
w(0, y) = w(a, y) = 0,

(17)

with g̃ = g − P (·, 0), h̃1 = h − Py(·, 0) − sy(·, 0). The solution w to (17) exists, since
w = v − s and v exists by the assumption. Let Sn(y) and Wn(y) denote the Fourier
series coe�cients for s(·, y) and w(·, y), respectively. From (8) it follows that

Wn(y) = g̃n cosh yζn +
1

ζn
h̃1n sinh yζn. (18)

Moreover, it can easily be found that

Sn(y) =
1

ζn

∫ y

0

sinh(y − τ)ζnφn(τ)dτ −
sinh yζn
ζn sinh bζn

∫ b

0

sinh(b− τ)ζnφn(τ)dτ. (19)

For a detailed proof see [13].
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3 Identi�cation u from inexact boundary data

The representation (14) of u depends on g, h as well as on the unknown traces of u
onto Γ1 and Γ2. Moreover, if g, h are replaced by noisy data gδ, hδ, then this series is
generally not convergent. For approximate solving Problem P1 we propose a spectral
type regularization method which does not use unknown fi, i = 1, 2.

Let α ∈ (0, 1) and

nα := max{n : cosh b

√
n2π2

a2
− k2 ≤ 1

α
}. (20)

Let a regularization solution be de�ned as follows:

uδα :=
nα∑
n=1

W δ
n(y) sin

nπx

a
, (21)

where

W δ
n = gδn cosh yζn +

1

ζn
hδn sinh yζn, and ζn :=

√
n2π2

a2
− k2. (22)

Let us observe that for any nα <∞ the function uδα is well de�ned.
In order to estimate the distance between uδα and u we introduce the auxiliary

function

uα := P (x, y) +
nα∑
n=1

Vn(y) sin
nπx

a
. (23)

Its convergence to u ∀y ∈ (0, b] follows from convergence of (14).

Proposition 3.1. If the assumptions A1 and (3) are satis�ed and k ̸= nπ
a
, then

∀y ∈ (0, b] and α ∈ (0, 1)

∥uδα(·, y)− uα(·, y)∥L2(0,a) ≤ c1
δ

α
+ c2

ε

α
, (24)

where c1 =
√
3 + 3b2, c2 = 2

√
2(1 + b) + 4

√
b3(a+ 1) +

√
a.

Proof. According to (21) and (23)

∥uδα(·, y)− uα(·, y)∥ ≤ ∥P (·, y)∥+

(
nα∑
n=1

|Vn(y)−W δ
n(y)|2

) 1
2

.

Since for n ≤ nα
sinh yζn
yζn

≤ 1

α
,

from(22) and (15) it follows

|Vn(y)−W δ
n(y)| ≤

1

α

[
|g̃n − gδn|+ y|h̃n − hδn|+ y

3
2∥φn∥L2(0,b)

]
.
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By (3) and A1 we have

|g̃n − gδn| ≤ |gn − gδn|+
4ε

nπ
, |h̃n − hδn| ≤ |hn − hδn|+

4ε

nπ
,

∞∑
n=1

|gn − gδn|2 ≤ δ2,
∞∑
n=1

|hn − hδn|2 ≤ δ2.

Moreover, according to the de�nition of φn

∥φn∥L2(0,b) ≤
2
√
2

nπ

[
(2a+ 1)∥f1∥H2(0,b) + ∥f2∥H2(0,b)

]
≤ ε

n

4
√
2

π
(a+ 1).

Thus, for C(a, b) = 4
π

(
1 + b+

√
2b3(a+ 1)

)
nα∑
n=1

|Vn(y)− V δ
n (y)|2 ≤

3

α2

(
(1 + b2)δ2 + ε2C2(a, b)

nα∑
n=1

1

n2

)
≤

≤ δ2

α2
3
(
1 + b2

)
+
ε2

α2
C2π

2

2
.

Finally, the estimation

∥P (·, y)∥2L2(0,a) =
a

3

(
f1(y)

2 + f1(y)f2(y) + f2(y)
2
)
≤ aε2

ends the proof.

Now we are going to estimate an order of convergence of uα to u. We have

∥u(·, y)− uα(·, y)∥ ≤

(∑
n>nα

S2
n(y)

) 1
2

+

(∑
n>nα

W 2
n(y)

) 1
2

, (25)

where Sn and Wn are given by formulas (19) and (18), respectively. Due to de�nition
(20), if n > nα, then n > k a

π
, i.e. ζn > 0 and

0 <
1

sinh bζn
< 2α.

We have two auxiliary lemmas.

Lemma 3.1. If Sn are the Fourier series coe�cients for the solution s(·, y) to (16),
then for n > nα

|Sn(y)| ≤
2
√
b

ζn
∥φn∥L2(0,b).

Lemma 3.2. Let Wn be the Fourier series coe�cients for the solution w to (17). If
A1 is satis�ed, then for n > nα

|Wn(y)|2 ≤ |Wn(b)|2 + g2n +
16ε2

n2π2
+

1

ζ2n

(
h2n + 2

16ε

n2π2
+ 2b∥φn∥2

)
.
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We omit here the technical proofs of Lemmas. They are presented in details in [13].

Proposition 3.2. Let k ̸= nπ
a
. If the assumptions A1 and A2 are satis�ed, then

∃C1, C2 ∀y ∈ (0, b]

∥u(·, y)− uα(·, y)∥L2(0,a) ≤ C1(arcosh
1

α
)−1 + C2ε(arcosh

1

α
)−

1
2 (26)

and the constants C1, C2 depend on a, b and k.

Proof. From (20) for n > nα

1

ζn
<

b

arcosh 1
α

and
1

n
<
π

a

b

arcosh 1
α

.

Taking into account Lemma 1 and the estimation

∥φn∥ ≤ 1

n

2a

π
(2∥ψ0∥+ ∥ψ1∥) ≤

ε

n

6a

π
,

we get ∑
n>nα

S2
n(y) ≤ 4b

∑
n>nα

1

ζ2n
∥φn∥2 ≤ (5a

√
b)2

ε2

(arcosh 1
α
)2
.

For estimating the second term of (25) we use Lemma 2 and the assumption A2, i.e.
∥u′x(·, b)∥ ≤M . After some calculations we get∑

n>nα

W 2
n(b) ≤

1

n2
α + 1

∑
n>nα

n2W 2
n(b) ≤

b2π2

a2arcos2 1
α

Mε.

Let G and H be upper bounds: ∥g′∥L2(0,a) ≤ G and ∥h∥L2(0,a) ≤ H. We get

∑
n>nα

g2n ≤ 1

n2
α + 1

∑
n>nα

n2g2n ≤ G2b2π

a2

(
1

arcosh 1
α

)2

,

∑
n>nα

1

ζ2n
h2n ≤ H2b2

(
1

arcosh 1
α

)2

,

∑
n>nα

ε2

n2
≤ C

ε2

arcosh 1
α

,

which completes the proof.

Summarizing the above results we come to the following error estimation:

Theorem 3.1. Let u ∈ H2(D) be the exact solution of (2) and uδα be the regularized
solution de�ned by (21) for noisy data (3). If the assumptions A1 and A2 are satis�ed,
then there exist constants C1, C2 such that ∀y ∈ (0, b]

∥u(·, y)− uδα(·, y)∥L2(0,a) ≤ C1
δ + ε

α
+ C2

1

arcosh 1
α

(
1 + ε

√
arcosh

1

α

)
(27)
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An open question is how to choose the regularization parameter α in order to
minimize the above error bound for given δ and ε. Naturally, because of ε, we have
no convergence, when the data error bound δ tends to 0. However, in the model
considered, ε decreases, when the length of Γ increases. So, we may formulate the
following remark:

Remark. Let D be an in�nite strip and Ω := (x−, x+)× (0, d) ⊂ D. Let us assume
that ∀ε∃x−(ε), x+(ε) such that

∥u(x±.·)∥H2(o,b) ≤ ε.

Thus, if ∥u′(·, b)∥L2(R) ≤M and ε = δ, then

∥u(·, y)− uδα(·, y)∥L2(x−,x+) ≤ C̃1
δ

α
+ C̃2

1

arcosh 1
α

(
1 + δ

√
arcosh

1

α

)
.

However, the constants C̃1, C̃2 depend now on the length of Γ = Γ(ε), i.e. on x+(ε)−
x−(ε).

4 Conclusion

The di�erence between our formulation of the Cauchy problem for the Helmholtz equa-
tion on a rectangle and the previous ones consists in the fact that here data are given
only on one side of the rectangle. In previous formulations, additional homogeneous or
periodic boundary conditions on the sides parallel to the beam axis have been applied.
However, they had no clear physical meaning. In such a case, usually, the problem was
formulated on in�nite strip which allowed to apply the Fourier transform.

The approach presented in this paper is an alternative way to analyze such a prob-
lem. Under the assumption that the collimated laser beam is such that A1 is satis�ed,
we propose a series expansion approach which yields to series representation of the ex-
act solution. This representation can be used for formulation of di�erent regularization
methods. An example of such a method is proposed and its stability and error bound
are shown. The problem of choice of regularization parameter for this method is not
undertaken here and will be a subject of a subsequent paper.
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