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1 Introduction

The investigation of the problems of optimal control of systems described by elliptic
type PDEs when controlling functions are in coefficients of the equations meets with
serious difficulties. These problems usually are strong nonlinear and incorrect [see:
1-3]. Optimal control problem for elliptic type equation with controls in coefficients
aroused in optimization of structure of continuous media, designing of constructions,
elasticity theories, convection-diffusion processes [4, 5|. At present the problems of
optimal control in coefficients of linear elliptic equations has been already considered
in [6-13] and other works. Such problems for quasilinear elliptic equations are not have
been enough studied |14, 15].

In this paper the optimal control problem with nonlinear criteria of quality for
class of quasilinear elliptic equations with controlling functions in coefficients and with
nonlinear phase and functional constraints is considered. Correctness of the problem
is investigated and the necessary condition of optimality in the form of the generalized
rule of Lagrange multipliers is established.

2 Statement of the problem

Let the domain 2 C E, (n > 2) is a full-sphere, a spherical stratum, a parallelepiped or
can be transformed to one of these domains by means of regular transformation from

C?(Q), I is a continuous Lipschitz boundary of domain Q, z = (21,...,2,) € Q is an
arbitrary point. Designations of functional spaces and their norms used in the paper
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correspond to [16, pp. 27-30]. Below, the positive constants which independent on
estimated quantities and admissible controls, are denoted as M;, (j =1,2,...).
Let the controlling system is described by the following quasilinear elliptic equation

— Z nes k(x))uxj)zl +q(x)a(z,u) = f(z), =€ Q, (2.1)

i,j=1

with boundary condition

u(x) =0, xzel, (2.2)

where a;;(z, k) (i,j = 1,n), a(z,u), f(x) are given functions, k(x) = (ki(z), ..., k.(x)),
q(z) are the controlling functions. Let v(z) = (k(z),q(z)) is a control, u = u(z,v) is
a solution of the problem (2.1), (2.2) corresponding to control v(x). Let us introduce
the set of admissible controls V,q = K X @, where

K = {k(z) = (ki(z), ... k,(x)) € (W (Q)" : 0 < v < k() < gy,

|kioy ()] <d (i=T75 j=Tn), a e on Q}, (2.3)

Q={qx) € Loo(2) : 0< g < q(z) <q1 a.e. on Q},

where p; > v; > 0, d( D=0 (i=1,r, j=1,n), @ > qo> 0 are given numbers,
a.e. denotes a property "almost everywhere”.

Let us formulate the following optimal control problem: among of all admissible
controls v(z) = (k(x), q(z)) € V4, satisfying constraints

/ [Fy (2, u(z,v), up (2, v), k() +q(2)Gi(z, u(z,v), up(z,v))]dr <0, (I=1,l),

(2.4)
find a control v,(z) = (k.(x), g«(x)) € V,q, minimizing the functional

Jo(v) :/[Fo(:c,u(x,v),ux(x,v),k(m)) + q(2)Go(z, u(x,v), uy(z,v))|dx (2.5)

where F)(z,u,p,k), Gi(z,u,p)) (I = 0,lp) are given functions its arguments,
p=(P1,-spn) k= (k1, ..., k).

Let us suppose, that following conditions are below satisfied

1) f(z) € Ly(2); the functions a;;(z, k) and their partial derivatives with respect
to x,, m = 1,n are measurable with respect to x € Q and continuous with respect to
k € K, where

K():{k?: (kl,...,k}) EFE. :0<vy <k < W (Z: ]_,’I“)},
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2) for almost all x € Q and for all £ = (&,...,&,) € E,, k(z) € K, the ellipticity
inequality

vI @Y ayle k()6 <pd €
=1 i=1

,j=1

is valid, p,v = const > 0 and for all k(x) € K the following inequalities are take place

Haijxm(x7 k(m))”n_A,_LQ < % (i>j>m = 17_”)7

3) the function a(z,u) are measurable with respect to x € {2 and continuous with
respect to u € R, for almost all z € 2 and for all uy,us € R the relations

a(x,0) =0, 0<[a(z,uy)— alx,us](u; — up) < L(uy — ug)?, L = const >0

are hold.

4) functions F;(z,u,p, k), G;(x,u,p) are measurable with respect to z € Q and
continuous with respect tou € R, p € E,, k € Ky; forn =2 and n = 3 for any h > 0
there exist such functions o™ (z), A" (z) € L;(), and constants Mz, M, > 0, that
for almost all z € , and for all u € [—h, h|, p € E,, k € Ky the inequalities are take
place

|Fy(2,u,p, k)| < o (2) + M; |p|™

|Gz, u,p)| < 8P () + Mylp|?,  (1=0,1)

for n > 4 there exist such functions a(x),8(z) € L1(2) and constants M5, Mg > 0,
that for almost all x € Q and for all w € R, p € E,, k € Kj the inequalities are take
place

|[Fil,u,p, k)| < alz) + Ms([u] + [p|™),

Gy, u,p)| < Bla) + Ms(JulT + [p|?), (1=0,),

where 77,75 are some numbers that satisfy the following conditions

Ty € [2,00) at n =4,r] € [2,2n/(n —4)) for n > 5, (2.6)

ry € [2,00) at n =275 € [2,2n/(n — 2)) for n > 3, (2.7)

5) set of admissible controls, satisfying constraints (2.4) is not empty, i.e. W =
{v(z) € Vag : Ji(v) <0(L=1,1p)} # 0.

Under a solution of the boundary value problem (2.1), (2.2) corresponding to the

controling function v(x) € V,4, we will understand the generalized solution from W3 ()

0
of this boundary problem, i.e. function v = u(z, v) from W3 (Q) satisfyed the following
integral identity
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/ [Z aij (7, k(7)) g, N, + q(a:)a(x,u)n] dr = /f(x)nda: (2.8)

0
for all n = n(x) fray Wy ().

Using the theory of monotone operators [17, p. 94|, and also results from [16, pp.
354-368]|, easy to verife follows that for each fixed v(z) € V,4 an unique generalized
solution u(z,v) of the problem (2.1), (2.2) exists from spacc Wy (2). Moreover,this in
generalized solution u(x,v) of the problem (2.1), (2.2) belongs to the space W3(Q) =

0
W2(Q2) N W3(Q) also, satisfies the equation (2.1) at almost all z €  and following a
priory estimation is takes place

2
[ull$h < My || fllpq - (2.9)

It is well known [18, p.78| that enclosures W3 (Q) — L, (), W3 (Q) — L, ()
are bounded, if the numbers r; and 7y are satisfy the conditions:

rm=ooforn=2orn=3, r>2forn=4, r=2n/(n—4)forn>5 (2.10)

ro>2 forn=2, ry=2n/(n—2) forn>3. (2.11)
From the inequality (2.9), it follows that the following estimation is take plase:

[l 0 + el 0 < Mz [ fllyq- (2.12)

Moreover, from the condition 4) it is follows that the operators generating by fol-
lowing functions

Fi(z,u(z,v),u.(z,v), k(z), G (v,u(z,v),u.(z,v)) (=0,

are operate from L, () X Ly (2) x K, Ly () X L (2) to L1(S2), L1(2) accordingly
[19, p. 376]. From this it follows that the functional Jy(v) is defined in W and takes
finite value.

3 Correctness of the problem

Let us introduce the space B = (W ()" x L, (Q), where s; > n for n > 2,5, = 2 at
n=2and n=3, sy >n/2foralln>4.

Theorem 3.1. Let the conditions 1)-5) are satisfied. Then of for problem (2.1)-(2.5)
there is exest at least one optimal control v.(x) = (ki(x), gu(x)) € Vaq i.e.

Jo. =f{Jo(v) : v =0(x) € Voa} > —00, Vi = {v.(x) € Vg : Jo(vi) = Jou} # 0.

Set of optimal controls V. of the problem (2.1)-(2.5) is weakly compact on B and
arbitrary minimizing sequence {v™ (x)} = {(k") (x),¢"™ (z))} C Vg of the functional
Jo(v) converges weakly to the set V, in B.
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Let us show that the functional Jy(v) is weakly continuous on the set V,4 in B. Let
v(z) = (k(z),q(z)) € Voq be some element and {0 (z)} = {(k") (), ¢"™ (2))} C Vi
be an arbitrary sequence converging weakly to the element v(x) in B, i.e.

k™ (z) — k(x) weak in (W, (), (3.1)

"™ (z) — q(z) weak in L, (Q). (3.2)

From compactness of the enclosure (W] ()" = (Loo(2))" [18, p. 78] and from
(3.1) it follows that

k™ (2) = k(z) strong in (Leo(Q))" (3.3)

Besides, owing to single-valued solvability of the problem (2.1), (2.2), for each
control v(™(z) € V4 it corresponds a unique solution u(™(x) = wu(x,v™) of the
problem (2.1), (2.2) and the following estimate is valid:

<M; (m=12.). (3.4)

[l

Then from compactness of the enclosures W3(Q) — W3 (Q), W} (Q) = L,+(Q),
W3 (Q) — Lys(Q), [18, p. 78] follows that from the sequence {u(™} it is possible to
extract subsequence {u(™)} such that

u™) () — u(x) weak in WZ(Q) and strong in W3 (Q), L+ (), (3.5)

ul™) () — Uy, (z)(i = 1,n) strong in L5 (), (3.6)

T

where u(z) € W3((Q) is some element, r} = oo at n = 2 and n = 3, the number 7} for
n > 4, and the number 73 for n > 2 satisfy conditions (2.6), (2.7).

Now, we like show that u(z)is a solution to the problem (2.1), (2.2), corresponding
to the control v(z) € Vg4, i.e. u(x) = u(x,v). It is clear that the following identities
are valid:

n

1> aij(x,k(mk)(a:))ugnk)nzj + ¢ (2)a(z, u™) | do = [ f(z)ndz, (k=1,2,..),
Q [4j=1 Q
0
Vi =n(x) € W ().
(3.7)
On the basis of relations (3.3)-(3.6) and constraints on the functions a;;(z, k), (i,j =
1,n) we obtain

[ 30 gl KO (@)ul e di = [ 52 iy, K0 () () — e
Q i,5=1 Q Z] 1 (38)
+

5{ a;;(z k:mk)( ) Uy, Mg, A —>f Z aij(x,k(x))uxmzjdx

1 Q i5=1

@
WM:
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Besides, it is easy to see that

/q(mk)(ac)a(x,u(m’“))n dx = /q(mk)(x)[a(x,u(m’“)) — a(m,u)]ndx—i—/ ¢ (2)a(z, w)n dz.
Q Q Q
(3.9)
Using the condition 1), the Cauchy-Bunyakovsky inequality, the inequalities 0 < ¢y <
¢ (z)<q (k=1,2,....) a.e. in Q and the relation (3.5), we obtain

/ ¢ @)la(z,u™) = a(e u)nde| < @ L 0™ = ullyg 0l — 0. (3.10)
Q

Further, using the inclusions u(z) € L, (2), n(z) € L,,(2), where the numbers
r1, 7o satisfy conditions (2.10), (2.11) and imposed conditions on number so, it is
easy to verify that a(z,u)n € Lg, /(s,—1)(€2). Then from convergence (3.2) it is received
that

/q(mk)(x)a(x,u)ndm — /q(x)a(x,u)ndx. (3.11)
)

Q

Then passing to the limit in the equality (3.9) and considering (3.10), (3.11), we
obtain

q(m’“)(x)a(x, u(m’“))ndz — [ q(x)a(z,u)ndz
/ /

At last, passing to the limit in the equality (3.7) and considering (3.8), (3.11) we
obtain that u(z) satisfies the identity (2.8), i.e. is the generalized solution to the
problem (2.1), (2.2), from W, (), corresponding to the control v(z) € V,4. From this
and from the inclusion u(z) € W3(Q) follow that u(z) = u(z, ).

Thus, it is set up that satisfying relations (3.1), (3.2) it is possible to select the
subsequence {u(™®)} from sequence {u™} for which relations (3.5), (3.6) are valid,
where u(z) = u(x,v). It is easy to verify that relations (3.5), (3.6), are valid not only
for the subsequence {u™} but also for all sequences {u™}, i.e.

u'™ () — u(z, v)weak in WZ(Q) and strong in W (Q), L+ (), (3.12)

ul™ () — ug, (z,v) (i =1,n) strong in Ly (2). (3.13)

T4

Besides, from the condition 4) it follows that the operators generated by functions

Fi(z,u(z,v),u(z,0), k(z), G (z,u(z,v),u,(z,v)) (1=0,l) ,

continuously operate from L,x(Q2) x Ls(€2) x K, Ly+(Q) x Lz () in Li(9), L1(2)
accordingly | see:19, p. 376]. Then, using relations (3.2), (3.3), (3.12) and (3.13) we
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obtain that Jy(v™) — Jy(v) at m — oco. It means that the functional Jy(v) is weak
in B, is continuous on the set V4, and on the set W also.
Show that set W is weakly compact in the space B. Let

{v™ (@)} = (K" (@), ¢ (@)} c W

be an arbitrary sequence, i.e.

o™ (z) = (K™ (z), ¢ (x) eV, J™)<0 (I=T11; m=12,..).

The set V4 is convex, closed and bounded in a reflexive Banach space B |20, p.
51]. Then from the sequence {v™(z)} = {(k"™(x),q™) (x))} C V4, it is possible to
select the subsequence {v™)(x)} = {(k™)(z), ") (z))} C V,q such that k(™) (z) —
k(z)weak in (W2 ()", ¢ (z) — g(z) weak in Ly, (Q), where v(z) = (k(z), ¢(z)) €
V.4 is some element. Repeating the reasoning above at the proof of a weakly continuity
of the functional Jy(v), and passing to the limit in the inequalities J;(v™)) <0 (I =
1,1p), we obtain thoot J;(v) < 0 (I = 1,1y). It means that v(x) € W, i.e. the set W
is a weak compact in B. Then, applying results from [20, p. 49|, we set up that the
problem (2.1)-(2.5) exist. The proof of theorem 1 is complete.

Remark 1. The problem considering in the [13] is particyler case of the problem
(2.1)-(2.5. Then from examples given in the work [13] show that a solution of the
problem (2.1)-(2. 5) can be non-unique and minimizing sequence for the functional
Jo(v) can not have limit in the space B, i.e. the problem (2.1)-(2.5) is incorrect in the
metric of space B.

4 Necessary condition of optimality

Let following conditions are satisfied:

6) the functions a;;(z,k)(i,j = 1,n), a(z,u),
have partial derivatives a, (z,k)(i,j = 1,n; m 1_) au(z,u), F(z,u,p,k),
iy (2, u,p, k), Fu, (2,0, p, k), Gr(z,u,p), G, (2,u,p)(l = 0,1p; i, = T,n; m = 1,7)
that are measurable with respect to x € (), and are continuous W1th respect to
re, ueR, pek, keKy

7) ay(x,u) > 0 at almost all z € Q and for all u € R; the operators generated
by functions a;jk, (z, k() (4,7 = 1,n; m =1,7), a,(z,u(x)), Fu(z, u(z), u(z), k(z)),
Fiy (02 1) ()P (2,000) 0(0) (2}, G0, (), G ).
uy(x)) (I = 0,lp; 3,7 = 1,n; m = 1,7) continuously operate from (WL (Q))", L,, (Q),
Ly, (0) % (L, (9))" x (WL ()7, Ly, () X Ly, () x (WL (), Ly, () x (L, <Q>> ><
WL (), L, () % (L () Lo, () % (L, (D))" in L (9), Ly (@), L (), L (),
L1 (), Ly (), Lo (Q2) accordingly, where s = 2, at n =2 and n =3, s > % for n > 4.

For the problem (2.1)-(2.5) we introduce conjugate states i, = (x,v), 1=0,1l,
are the solutions of the following problems

F(z,u,p, k), Gi(x,u,p)(l = 0,lp)

- Z (aij (Jf,k’ (x))¢lxl)x] + Q(x) Ay (x,u) =

1,7=1
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= —Fu—q(2) G+ Y (Fip, + 4 () Gy, , €9, (4.1)
i=1

Y (z,0) =0, z€l (1=0,l), (4.2)

where u = u (z,v) is a solution of the problem (2.1),(2.2). Under a solution of the
problems (4.1), (4.2), at each fixed control v € V4, we are understand a generalized

_ 0
solution from Wy (©), i.e. the functions ¢y = ¢ (z,v) [ = 0,1y from Wy (Q) satisfying
the integral identites

/ [z iy (2. (2) Ve, + 4 () 0 () Wz] o =

=—J { (Fuu + ¢ () Gru) m + Z:)l (Fip, + q (z) Gip,) nxi] dx (4.3)

(1=0,lo), Vn=n(z)e T/I(/)'Q1 Q)

From results of the book [16, pp. 181-200] it follows that in conditions of the
problem (4.1), (4.2) has an unique generalized solution from W, (Q2) for each given
v (z) € V,q and the following estimates are satisfied

1
lillSe < Ms ||| Fuullsg + 1Gualloq +

Z Glpz

2,Q 2,0

(4.4)
The enclosure Wy (Q) — L,, () is bounder [18, p. 78] . Using this estimates, we
obtain that

11l < Mo |[[Flullyq + Grully 0 +

2,0 2,0

(4.5)
in which the number 7, satisfies the condition (2.10).

Theorem 4.1. Let conditions 1)-7) are satisfied, v, (x) = (ki (x), s () € Vg is opti-
mal control for the problem (2.1)-(2.5), u. (z) = u (z,v.), i (z) = ¢ (z,v.) (1 =0,1),
are solutions of the problems (2.1), (2.2) and (4.1), (4.2), corresponding to the control
v, (x). Then there are numbers Aj > 0 (l = M) stmultaneously unequal to zero such
that at almost all x € Q and for any k (z) € K, q € [qo, q1] the following inequality is
satisfied

ZAz /z

m=1

[Z auk QZ’ k )u*zj¢l*xi + Ekm (il?, U ([L’) 7u*90 (ZIZ’) ) k* ($)> X

7,7=1
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B () = ke (2)] d + [a (2, ua(2)) P1(2) + G (2, 0a(2), e (2))] [g = ¢ (2)]} = ((ix .

Let us introduce a variation of control functions k. (z) and g. (). For the function
k. (z) we define a classic variation
ke () = ki (z) + " [k () — ki (2)], x€Q,
where € € (0, 1) is any number, k, (z) € K. From convex ness of the set K in (W2 (Q2))"
it follows that k. (z) € K for all € € (0,1). It is obvious that
k. () — k. (z) strong in (WL (Q))" for e — 0. (4.7)

For the function ¢, (z) we construct a multipoint impulse variation ¢. (x). We take
a finite set pairwise various points of Lebesgue z¢ € (z = I,_N) for all considered
functions. Let 87(i = 1, N; m = 1, M) be any real numbers. We define the paral-
lelepipeds

k k-1
ka:{x:(xl,...,xn)eﬁz $§—525f§x1<x’i—6255,
I=1 I=1
vl —ck <z, <1l —e(k—1) (322,_71)}

(i=1,N; k=1,M).

For sufficiently small ¢ > 0 parallelepipeds II, are not intersected, and the vol-
ume II§, is |II5| = BFe™. A variation ¢. (z) which parameters are sets {2}, {5},
(i=1,N; k=1,M), we define as follows:

qf, x € 115,
¢ (¥) =9 q (), =e€Q\UII, (4.8)
ik

where ¢f € [go,¢1] (i =1,N; k=1,M) is any number. It is obvious that ¢. (z) € Q
for all sufficiently small € > 0 and

¢: () = g (x) strong in L,(Q) (4.9)

for ¢ — 0, where p € [1,00) is any finite number.

Let us designate v. (z) = (ko (2),¢ (x)), ue (z) = u(x, vo), Au () = ue (z) —
Uy (), Acaij = ai; (z,v:) —aij (z,0.) (i,5 =1,n), Ack; (x) = key () — ki (z) (i =1, n),
A.q = ¢- () — . (). From the conditions (2.1), (2.2) it follows that Awu,. is a linearized
solution to the following boundary value problem in W3, (2)

- Z (aij (CL’, ké (ZE)) Aueﬂjj)xi + q: (.I) Ay, (fa) Aua —

1,7=1
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= Z (Aeaiju*mj)mi —Aqa(z,uy,), €, (4.10)
ij=1

Au. () =0, zel, (4.11)

where & = (x,u, + 0Au,), 0 € [0,1]. For the Au. the following estimate is valid [16,
p. 221]

n

1Auc |52, < Mg [Z (\\Asazjuw

i,j=1

Q,Q + H (Asal])xl u*.’bj

) 18 <x,u*>r\m] ,

(4.12)
Using Holder’s inequality, the conditions imposed on numbers s; and 79, estimate
(2.11), relation (4.7) and conditions 1) - 6) for the functions 035 (z, k) (i=1,n), we

have
n

Z ( HAaaiju*a:j:vi

2,Q + H(Aaaij)xiu*%’ HZQ) S

ij=1
n
Z (HAECLU”OO,Q | Uz jm; 2,0 + ”(AEGU)%‘ 51,9 ’ Usa; H231/(51—2),Q) <
ij=1
n
Z (HAsainOO,Q ‘ u*xjxi 2.0 + H(Aga”)wl 5.0 ’ U/*xj HTQ,Q) —0 (413)
ij=1

when ¢ — 0. Besides, using Holder’s inequality, condition 3) for function a(x,u),
estimate (2.12) and relation (4.9), we obtain

1Azgqa (2, w)lly 0 < 1Al 0 la (@ uw)ll, o < LlAGlL, o sl 0 =0 (414)

when ¢ — 0, where the number r; is determined by the condition (2.10), r5 = 2 at
n=2andn =3, r3 = r?”jw ry > 2atn =4, r3 =3 for n > 5. Then taking into

account the relations (4.13) and (4.14) in the inequality (4.12), we obtain the following
convergence

|AW][5Y = llue — us]lSe — 0 when e — 0 (4.15)

Let us calculate the first-order variations of the functionals J;(v), (I =0,ly). Using
condition 6), 7) the increment of the functional J;(v) at the point v,, it is possible to
present as follows:

AEJZ<U*) == Jl(va) - Jl(v*) ==
= f [Flu (775!) Au, + 21 Fip, (Nsl)Aueazi + qf($)<Glu (Usl) Au, + Zl Glpi (fsl)Ausziﬂdx""
Q = i=
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42 [ Py (1) o (2) = b (@) + 30 [ Goonene) e — g )
Q m=1

i=1 h=1pje
(4.16)
where
Nel = (iL‘, Uy + ellAuaa ka:w k&) 5 Hel = (l’, Usy Usg + QQZAUECIH k&) 5
Ve = (377 Uy + 93lAu57 uz—:x) ; gz-:l == <x7 Uy Usg + 941Au5x¢) P
Pe = <I7U*7 Usg k. + ‘951 (kE (I) — ki (.T))) )
bre0.1] (i=T5 1=0.1)
Let ¢ (z) = ¥ (x,v.) be generalized solution of the following boundary value

problem in W, (Q)

- Z (az’j<xa ke(x))\lllemi)rj + QE(x)au (xa U + QAU/E) ?/115 -

1,j=1

n

Z (Fip; (pet) + = (z) Gy, <€€l>)xl — (Fuuw (1) + ¢= (%) G (va1)), 2 €Q (4.17)
Va(z) =0, z€Q (1=01) (4.18)

where 0 € [0, 1]. Under the generalized solution to the boundary value problem (4.17),
(4.18) we understand the function v (x) satisfying the following integral identity in

WAQ)

/ i (@, ke (2)) View N, + e (@) 0 (2,0, + 0AUL) Y] dae =
Q

- / {[Fru () + ¢ (2) G (va) |+ + Z [Fip; (1) + = (2) G, (fel)]nxl} dr,

0 —

Using relations (4.4), (4.5), (4.7), (4.9), (4.15) and condition 6),7) for the solution to
the problem (4.17), (4.18) it is possible to show that, i.e.

1AYL5 = [t — ullsa =0 (1=0,1) as € = 0. (4.20)

It is clear that a solution to the boundary value problem (4.10), (4.11) satisfies the
following integral identity
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i i aij (T, ke (7)) Aty N, + ¢ () ay (2, uy + 0Au.) Auen | do =
215

i,7=1

. (4.21)

-/

Q

Z Aaaiju*x]—nxi + Aaqa (ZL‘, u*) 77] dl’ vn = 77 (ZB) € W21 (Q)

ij=1

Taking in (4.19) n = Au,, and in (4.21) n = ., subtracting these equalities and
taking into account the obtaining equality (4.16), we have

AEJZ (U*) - f Z Aeaiju*:pjl/}lsxi + Asqa (xa U*) wle dx_"

Q |45=1

v f [ " Fi () o (1) = o <x>]] dot

o~

o~
(=)

~—

+ZZ/GZ (@, U, Uso) [ — @ (2)]dz (1 =0,1p) - (4.22)

i=1 k=1
I,

Using condition 6), 7) for the functions a;; (z,k) (i, = 1,n), we have

Aaaij = 5” Z aijkm (ZL’, U + aij (ke — l{?*)) [k'm (ZL’) - k*m (l’)] ; gij - [0, ].] (Z,] = 1,n) s

m=1

/qua (33, u*) Qz}ladx = Z Z / a (ZE, u*) wla (35) [Qik — (G« (x)]d:r (l = m)

o i=1 k=1pje
Taking into account of these relations, the equality (4.22) we can write as follows:

A (v) = AW (v) + AP T (v (1=0,1)) (4.23)

where

3

Agl)Jl (U*) =" / Z [Z A5k, (377 k* + gij (ke - k*))u*xﬂvblszi + Ekm (ﬁal) X

ij=1

[Fm () = Fam (2)] d,

AP J (v,) = Z Z / [a (z,u,) Ve + Gp (T, U, Un)] [ir — G (2)]da. (4.24)

i=1 k=1
I,
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The firstorder variation of the functional J; (v) at the element v,, determined as
follows

5Jl (’U*) = lim

e—0 gn en

(1) (2)
(Ag Ji (vs) N A, (m)) = 60 (0,) + 62 (v,)  (1=0.1)

(4.25)
Now, we show that

5(1)Jl (vy) = / Z [Z Ak, (x, k. (ZE))U*zjiﬁl*ml + Fi (2,00 (), Use (), K (2)) | %

[k () — K ()] d2x, (4.26)
5(2) Jl (’U*) =
=22 A [ale! u (@) e (&) + G (' () s (27))] [ — 0 (2)]
(1=0.00) (4.27)

Using the equalities (4.24), (4.26), the Cauchy-Bunyakovsky inequality, relation
(4.20), and condition 6),7) we have

AY T (v,)

£ =3 (U*)‘ =

2,j=1

/ Z [Z Ak, (ZL‘, k. + gij (ka - k*))“*xjwlaﬂ?i + Ekm (ﬁsl)] [km (l’) - k*m (CL‘)] dx—
Q m=1

/ [Z ik (T, s (2) Ve, Vs + Frt, (2,0 (2) 2y (), K (x))] X
q m=1 Lij=1

[k (%) — k()] da <

u*xj H279 ”wlaxi 2,0 +

Z [Z Haijkm (I‘, k’* +§U (kg - kf*)) — Qijk,, (ZL’, k;* (x))”oo@ ‘

m=1 i,j=1

Z ||aijkm (v, K, (x))HOQQ ‘

3,j=1

Usa; H27Q ||A77Z)l€£m ||2,Q+
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[ Bk (Fet) = Fie, (2, 10 (2) U () 5 Keu ()1 @] 1R = Rillogo = 0 (=0, 10)

when € — 0. From this fact follows the validity of equality (4.26) .
Now, we prove the validity of equality (4.27). For this purpose we set up the
following convergence

/

Q;

AP Ty (v,)

677,

— 6B (v)|de =0 (1=0,1) (4.28)

when ¢ — 0, where Q; C Q is some neighborhood of the Lebesgue point z° € 2. Using
equalities (4.24), (4.27) and definition of the Lebesgue point, we have

/

Q;

AP (v)
en

— (5(2 Jl (U*

dx_/ gnZZ/ T, ) Yie + G (T, Uy U )] X

=1 k= 11-[5

X [qir — q.(x)] dz—

_Ziﬁf la (2%, ue (27)) Y (2°) + G (2w (27) e (2)) ] [gin — g (27)] | da <

i=1 k=1

< / ;ZZ [ a4 G o) g~ g 2o

=1 k= 11—[5

Q;

% B la (@, ue (27) Yu (27) + Gi (2", w (27) v (29))] gk — g (2)]d+

%
1k=1

o8

s
Il

N M

/ %ZZ/@ T, Uy ) AU (i — g (T)]dx| dx =

i=1 k= IH

Q;

o(e™) S
=—,m ) At [g; dx|d [=0,1

(4.29)
Let us make variable replacement z = 2% + ¢ and take designate as follows:

ﬁ?k:{gz(glw-'afn)EEn: _§§§z<§ (221,_’/1)}
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Then using inequalities 0 < ¢o < ¢ () < ¢ ae. on 2, 0 < ¢ < gix < @1,
(z' =1,N; k=1,M), the Cauchy-Bunyakovsky inequality, estimate (2.9), and rela-
tion (4.20), we have

de <

MS

1N
o 2

=1k

J

Q;

[ a(@,w) A lgi — q. (2)]dx

1118

ik

i=1 k=1-

ginZZ/ /|a(mi+§,u* ($Z+§)) JANT/ (ZEi—l-f)X [Qikz_(]* (a:i—i-f)”d:v}dasg

2 2

%ZZ/ /‘am—l—ﬁu*(x—l—f))‘da? [1av @ s art de o

zlk1~ Q.
1

when € — 0.

From this and (4.29), follows the validity of relation (4.28). It means that the equal-
ity (4.27) is satisfied. The set €2 can be covered by the neighborhoods €2;. Therefore,
it is possible to assert that for almost all 2 € Q2 the equality (4.27) is satisfied.

Let v, () = (k« (z), g« (x)) € Vag be an optimal control of the problem (2.1)-(2.5).
Let us

0k(z) = k(x) — ki(x), k(z) € K.

For the function g, () we construct a multipoint impulse variation ¢ (). We take a
finite set pairwise various points of Lebesgue x* € Q (2 = 1,_N) all considered functions.
Let 8f(i =1,N; k=1, M) be any real numbers. We define the parallelepipeds

Each set of parameters p = (pf, ok, qik,xi) corresponds to the variations of func-
tional A, = {01y,011,...,61;,} , as a vector in space Ej 4 starting from point
(Jox, 0, ..., 0), follows formulas (4.25)-(4.27), where Jo. is a minimal value of the func-
tional Jy (v) on the set W. Without losing generality, it is possible to consider that
Jo« = 0. If it is not so then shifting with respect to an axis Jy we pass to such space in
which the vector A, goes out from beginning coordinates.

Various set of p correspond to the set P C Ej 41 of functional variation of vectors
A,. Using linearity of firstorder variation of functional with respect to parameters
Ok, B, qir, follows [21] it is ease to show that P is a convex cone in Ej ;. By enu
way we proved that a cone P constructing for optimal control v, (z) and “negative
angle” L = {A € By A= (ap,a1,...,a,), a4 <0 (l = mo) } are divided by the
nontrivial functional \* = ()\E‘),Xl‘, . .,)\}‘0) € (Ejys1)" = Ejys1 in Ejy 41, where \f >
0 (1=0,1y). From this fact and form angle L it follows that

lo
> AT (v) > 0. (4.30)
=0
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Assuming M = N = 3{ = 1, 2° = z, q1; = ¢, and taking into account relations
(4.25)-(4.27) in the expression (4.30), it is convinced of validity of the inequality (4.6).

The proof of Theorem 2 is complete.

Remark 2. It can be shown that under the conditions of Theorem 2 hold the
complementary slackness

A i (U*) =0 (l = HO) )

ie for those indexes which J; (v.) < 0, may be considered appropriate \; =0, (I = 1,1)
[21].
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