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Abstract The injection of polymers is a widespread Enhanced Oil Recovery (EOR)
technique. However, the continuous injection may be very expensive, and the slug
(discontinuous) injection is an alternative to improve the recovery factor. In this
paper, streamline simulation is used to model the 2-D 2-phase oil displacement by
polymer slugs, considering adsorption e�ects characterized by the Henry and Lang-
muir isotherms. Streamline simulation can be much faster than conventional �nite
di�erence models and its results may be used for slug polymer injection evaluation in
heterogeneous reservoirs. It decouples the 2-D problem into multiple 1-D problems
along streamlines. The mass transport equations in the streamlines are solved im-
plicitly, through the method of characteristics. The continuous polymer injection is
a Riemann problem and its solution is self-similar, but in the case of slug injection,
there are interactions between waves of di�erent families. In this work we extend the
streamline-based technique to the case of slug injection, incorporating the implicit-form
solutions of the corresponding transport problems into the numerical process. Such so-
lutions are free from numerical di�usion, and allow the use of bigger time steps. The
simulations were run in 2-D incompressible models without gravity e�ects. Results ob-
tained were compared to a �nite-di�erence simulation. The solutions along streamlines
allowed the exact modeling of shock and rarefaction waves as well as the interaction
between waves of same and di�erent families.
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1 Introduction

Water�ooding is the most widely used method of secondary oil recovery by petroleum
industry. This technique became more important in the 50's, when their main weak-
nesses and strengths were also identi�ed. Water�ooding at unfavorable mobility ratio
or in strongly heterogeneous reservoirs does not show satisfactory results. Polymer
�ooding is an alternative to improve oil recovery in such scenarios [1, 2]. The polymer
increases the aqueous-phase viscosity and may, in addition, decrease the e�ective per-
meability to it. Thus, the area swept by water is increased and water breakthrough is
delayed. The main drawback of a polymer injection project is the price of the polymer;
and it may be overcome through the use of a polymer slug driven by water.
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A fast and robust full �eld scale simulator that includes a polymer �ooding option
is of fundamental importance for preliminary evaluation of di�erent secondary and
improved oil recovery options for a given reservoir. During the simulation of slug
polymer �ooding, an important issue to be considered is the adsorption of the chemical
component in porous media. Depending on the adsorption isotherm di�erent zones
with varying concentration of polymer both ahead and behind of the slug may appear.
Since certain polymer solution properties depend on concentration, e.g., the viscosity,
simulation models should take this e�ect into account.

Traditionally, such simulations are performed through �nite di�erences based nu-
merical models, well suited to represent the complex physics of the problem, but these
models lead to results with numerical di�usion. Streamline simulation is an alternative
to overcome the limitations presented by conventional simulators. This technique is
based on an analogy between streamlines and seismic ray tracing, and permits to reduce
multidimensional transport equations into a series of 1-D equations along streamlines,
see, e.g., [3].

The streamline approach for modeling multidimensional, multiphase �ow basically
can be comprised of the following steps:

• tracing streamlines based on an underlying velocity (and consequently, pressure)
�eld using the time-of-�ight algorithm as outlined by Datta-Gupta and King in
[4],

• computing tracer travel time or time-of-�ight along streamlines,

• decoupling the transport equations (concentration and saturation equations) us-
ing a coordinate transformation from physical space to the time-of-�ight coordi-
nates following �ow directions,

• solving (analytically or numerically) the transport equations along streamlines,

• and occasionally updating the streamlines to account for mobility e�ects or chang-
ing �eld conditions.

The computational advantage of the streamline approach can be attributed to the fact
that streamlines do not need to be updated frequently and the transport equations
along streamlines are decoupled from the underlying grid, thus allowing for faster
solution. The details of streamline simulation can be found in, e.g., [5].

Around 30 years ago, Lake et al. [6] introduced a hybrid streamline approach
to model large-scale micellar-polymer �ooding combining an areal streamtube model
with a cross-sectional �nite-di�erence simulator. Batycky et al. [7] presented a new
streamline simulator applicable to �eld scale �ow. The proposed method is three
dimensional and accounts for changing well conditions, heterogeneity, mobility e�ects,
and gravity e�ects. The changing in the mobility �eld is accounted for when updating
the streamline, and in this work the transport equation was solved numerically. Thiele
et al. [8] extended this approach to �eld scale polymer �ooding. Clemens et al. [9]
used streamline simulation to e�ciently manage a �eld polymer injection project. A
new metric was introduced: polymer injection e�ciency as a function of time for each
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pattern. AlSo� et al. [10, 11] analyzed the performance of polymer �ooding considering
both Newtonian and non-Newtonian behavior using streamlines simulation.

Fayers and Perrine [12] were among the �rst to analyze solutions of hyperbolic sys-
tems modeling continuous polymer injection. Exact analytical solutions were obtained
for continuous chemical �ooding with one dissolved component [13], with two dissolved
components [14] and with any arbitrary number of components [15]. Bedrikovetsky
[16] described the hydrodynamics of oil displacement by injection of polymer slugs for
di�erent adsorption isotherms.

In this work we extend the streamline-based technique to the case of discontinu-
ous polymer injection, incorporating the implicit-form solutions of the corresponding
transport problems into numerical process.

The organization of this paper is as follows. First, we formulate a mathematical
model describing the displacement of oil by a polymer slug driven by water. Second, the
solution of the formulated problem is done considering adsorption e�ects, described by
the Henry and Langmuir isotherms. Next, we formulate the basic steps of the proposed
algorithm for the 2-D case. Finally, the validation of the approach and 2-D examples
are shown to illustrate the capacity of the proposed method.

2 Mathematical Model Description

The mathematical model is a simpli�ed water/oil two-phase �ow in porous media with
the following assumptions:

• the �ow obeys Darcy's law,

• incompressible �ow,

• gravity/capillary e�ects neglected,

• components di�usion and dispersion are negligible,

• water density does not depend on polymer concentration,

• polymer adsorbs at thermodynamics equilibrium and its adsorption is a function
of its concentration in aqueous phase,

• local instantaneous equilibrium exists everywhere.

General Equations

Following the model assumptions, the pressure equation is given by

∇ · [(λo + λw)K · ∇P ] = Q , (2.1)

whereK is the permeability tensor, Q a source or sink volumetric �ow rate, λo = kroµ
−1
o

and λw = krwµ
−1
w are the oil and water mobility respectively, kri and µi are the relative

permeability and viscosity of the corresponding phase i = o, w.
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The transport process is described by the following quasi-linear equations:

ϕ
∂s

∂t
+ u · ∇f = 0 ,

ϕ
∂(cs+ a)

∂t
+ u · ∇(cf) = 0 ,

(2.2)

where u(x) is the total velocity, s(x, t) is the water saturation, c(x, t) is the polymer
concentration in the water phase, and (x, t) ∈ R3 × R+. The adsorbed concentration
is given by a(c), ϕ is the porosity of porous media, and the water fractional �ow is
de�ned by

f(s, c) = λw(λo + λw)
−1 .

The total velocity is calculated using Darcy's law:

u = −(λo + λw)K∇ · P .

Coordinate Transformation

The basis for any streamline simulation method is a sequential splitting of the coupled
pressure and transport equations. The pressure and velocity are then used as parame-
ters while advancing the transport equations a given time step. Finally, the new �eld
is used as input parameter for a new pressure solution step, and so on.

In reservoir simulation, the most important streamline parameter τ is called time-of-
�ight, since it can be interpreted as the travel time of a neutral particle along streamline
l [5]:

τ =

∫
l

ϕ

|u|
dζ .

Together with the bi-stream functions ψ and χ, for which u = ∇ψ × ∇χ, the time-
of-�ight τ form an alternative set of coordinates for 3-D space. The Jacobian of the
transformation from physical coordinates to time-of-�ight coordinates (τ, ψ, χ) is equal
to ϕ . From this, and the fact that u is orthogonal to ∇ψ and ∇χ, it is possible to
simplify the directional gradient along u as follows

u · ∇ = ϕ
∂

∂τ
.

This operator identity is a key point in any streamline method, allowing multidimen-
sional transport equations (2.2) to be transformed to a family of 1-D transport equa-
tions

∂s

∂t
+
∂f

∂τ
= 0 ,

∂(cs+ a)

∂t
+
∂(cf)

∂τ
= 0 ,

(2.3)

where the functions s(τ, t) and c(τ, t) characterize the 1-D �ow along streamlines.
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Statement of the Problem

We consider one of the possible mathematical models, widely used in the reservoir
characterization, describing the displacement of oil by a polymer slug driven by water.
The problem consists in the de�nition of the concentration c and saturation s satisfying
(2.3) and the following initial and boundary conditions:

t = 0 :

{
s = sI
c = 0

and τ = 0 :


f = 1

c =

{
cJ , 0 < t < tJ ,
0, t > tJ

(2.4)

where sI is the initial water saturation, cJ is the concentration of injected polymer and
tJ is the injection time.

3 Solution of the Problem

The solution of (2.3)-(2.4) is presented and discussed in details in many books, see,
e.g., [17]. We do not present a detailed derivation of the solution, our main goal is
the development of the streamlines simulator using the implicit-form solution along
streamlines. Such problem is solved by the method of characteristics, and may present
two kinds of rarefaction waves [18]:

• s-wave - constant concentration and varying saturation,

• c-wave - varying concentration and saturation.

The hyperbolic system (2.3) also admits shock waves, satisfying the following Rankine-
Hugoniot condition:

V (t) =
f+

s+ + [a][c]−1
=

f−

s− + [a][c]−1
,

where [A] = A+ − A−, and A− and A+ are the limiting values from the left (−) and
right (+) at the point (t, τ0(t)) along any discontinuity curve τ0(t), and V is the shock
speed. In the case of continuous injection the solution is self-similar, i.e.,

s = s(ξ) , c = c(ξ) , ξ =
τ

t
.

In the case of discontinuous (slug) injection the solution is not so trivial because of
interactions between waves of di�erent families. In the rarefaction zones the solution
is done in the implicit form only. The details of the solution construction are given,
e.g., in [18].

Case 1. Linear adsorption isotherm

The linear adsorption isotherm may be represented by Henry's law:

a(c) = Γc ,
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Region Concentration Saturation Description

I. ( , ) 0c tt = ( , ) Is t st = Zone of displaced oil.

II. ( , ) 0c tt = 0 1( , )s s t st< <

The corresponding path in ( , )s f plane is

represented by part of a curve ( , 0)f s .

III. ( , ) 0c tt = 2( , )s t st = Oil bank.

IV. ( , ) Jc t ct =
0 2( ) ( , )s s t st t

+

< <

Polymer slug. The corresponding path in ( , )s f

plane is represented by part of a curve ( , )
J

f s c .

V. ( , ) 0c tt =
0

( , ) ( )
J

s s t st t
-

< <

Water-drive zone. The corresponding path in ( , )s f

plane is represented by part of a curve ( , 0)f s .

Table 1: Structure of the 1-D problem, case 1

where Γ is the Henry law constant. In this case the jump of concentration is de�ned by
the discontinuity of c at the point (0, tJ), see (2.4). There is an interaction of the jump
of concentration with the s-wave of the self-similar solution for t > tJ . The path of
the discontinuity τ0(t) is built using the following system of transcendental equations:

tJ
t
= △(s+(τ0), cJ)) ,

tJ
τ0(t)

=
△(s+(τ0), cJ))

f ′
s(s

+(τ0), cJ)
, (3.1)

where △(s, c) = f(s, c) − (s + b)f
′
s(s, c), b = [a][c]−1. Fig.1 presents the solution for

this case. The structure of the solution can be divided into four regions, see Table 1
for details. Velocities Vk, k = 0, 1, 2, are calculated through the following expressions:

V0 =
f(s0, 0)

s0 − sI
, V1 = f

′

s(s1, 0) ,

V2 = f
′

s(s2, cJ) =
f(s1, 0)

s1 + [a][c]−1
=

f(s2, cJ)

s2 + [a][c]−1
.

Case 2. Convex adsorption isotherm

The convex adsorption isotherm (a
′′
(c) < 0) can be represented by Langmuir's law:

a(c) =
Γ1c

1 + Γ2c
,

where Γn, n = 1, 2, are the Langmuir constants. In this case, the discontinuity at
(0, tJ) produces a c-wave that will interact with a s-wave of the self-similar solution.
The discontinuity τ0(t) is described by (3.1) with b = a

′
(cJ). For t > t1 (Fig.2b)

the trajectory of the front of polymer slug t1 satis�es the following transcendental
equations:

dτ1
dt

=
f(s−(τ1), c

−(τ1))

s−(τ1) + [a][c]−1
=

f(s+(τ1), 0)

s+(τ1) + [a][c]−1
= f

′

s(s
−(τ1), c

−(τ1)) ,

τ1(t)[a(c
−(τ1))− a

′
(c−(τ1))c

−(τ1)] = cJ .
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Figure 1: Solution of the 1-D problem, case 1



110 Vicente, Priimenko, and Pires

J

s

c=0

c c=
JV2

-a(0) -a c( )
c5

5

V0

s
I

s0

f s( )

s

-a c( )
cJ

J

s1

s2

s3

s4

s5

s6

(a) (s, f)-plane

s5

I

II
III

VI

( )t

s6

s6

IV

V

t

t

tJ

1

2 ( )t

1

0 ( )t

VII

s4

s2

s1

s3

V0

V1

V2

1

(b) (τ, t)- plane

t

t1

tJ

sJ

s

(c) Saturation - s(τ, t)

t

t1

tJ

cJ

c

(d) Concentration - c(τ, t)

Figure 2: Solution of the 1-D problem, case 2

The solution is constructed using the hodograph transform in the regions where the
interaction between rarefaction waves occurs. Thus, the path sJ → s2 → s3 → sJ in
the (s, f)-plane transforms to tJ → s2 → s3 → tJ in the (τ, t)-plane. The velocity after
the polymer slug is de�ned by the right-hand side of the equation

dτ2
dt

=
f(s(τ2), 0)

s(τ2) + a′(0)
, (3.2)

where τ2 is the position of the rear part of the slug.
Fig.2 presents the solution of the problem in the case of the Langmuir isotherm.

The structure of the solution can be divided into seven regions, see Table 2 for details.

4 Streamline Simulation Description. 2-D Case

The simulator is based on an IMPES formulation, in which the pressure �eld is calcu-
lated using an implicit �nite-di�erence scheme. The water saturation and polymer con-
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Region Concentration Saturation Description

I. ( , ) 0c tt = ( , ) Is t st = Zone of displaced oil.

II. ( , ) 0c tt = 0 1( , )s s t st< <

The corresponding path in ( , )s f plane is

represented by part of a curve ( , 0)f s .

III. ( , ) 0c tt = 2( , )s t st = Oil bank.

IV. ( , ) Jc t ct =
0 2

( ) ( , )s s t st t
+

< <

Slug polymer. The corresponding path in ( , )s f

plane is represented by part of a curve ( , )
J

f s c .

V. 0 ( , )
J

c t ct< <
1 2( ) ( , ) ( )s s t st t t

- -

< <

Slug polymer. The corresponding path in ( , )s f

plane is represented by part of a curve ( , )f s c .

VI. ( , ) 0c tt =
1 1

( , ) ( )s s t st t
+

< <

The corresponding path in ( , )s f plane is

represented by a part of a curve ( , 0)f s .

VII. ( , ) 0c tt =
2( , ) ( )Js s t st t

-

< <

Water-drive zone. The corresponding path in ( , )s f

plane is represented by part of a curve ( , 0)f s .

Table 2: Structure of the 1-D problem, case 2

centration are calculated implicitly along the streamlines. The streamlines, launched
from faces of a cell containing an injection well, are traced using Pollock's method [20].
The calculation procedure for streamline simulation is illustrated by the �owchart in
Fig.3.

Equation (2.1) was discretized (Fig.4a) using the following �nite-di�erence scheme:

Txi+1/2,j
(Pi+1,j − Pi,j)− Txi−1/2,j

(Pi,j − Pi−1,j)+

+ Tyi,j+1/2
(Pi,j+1 − Pi,j)− Tyi,j−1/2

(Pi,j − Pi,j−1) = Qi,j .

The transmissibility coe�cients Txi±1/2,j
, Tyi,j±1/2

are calculated by:

Txi±1/2,j
=
(kxAx

△x
(λo + λw)

)
i±1/2,j

,

Tyi,j±1/2
=
(kyAy

△y
(λo + λw)

)
i,j±1/2

,

where Ax(Ay) is the cross-sectional area of the gridblock interface normal to the
x(y) direction and kx, ky are the components of the absolute permeability tensor
K = diag(kx, ky). Details of the solution of equation (3.2) and the determination
of transmissibility on the faces of cells can be found in [19]. The total velocity of the
�uid u = (ux, uy) is de�ned applying Darcy's law between two consecutive points of
grid:

uxi±1/2,j
= −

( kx
△x

(λo + λw)
)
i±1/2,j

(Pi+1,j − Pi,j) ,

uyi,j±1/2
= −

( ky
△y

(λo + λw)
)
i,j±1/2

(Pi,j+1 − Pi,j) .

Considering a two-dimensional grid (Fig.4b), the total velocities within a cell in the x
and y directions can be approximated by:

ux = ux1 + δx(x− x1) , uy = uy1 + δy(y − y1) ,
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Pressure equation

Velocity field

Streamline path

Transport equation

Mapping

Numerical solution

Darcy’s law

Pollock’s algorithm

Weighted average

Implicit-form solution

Figure 3: Major steps in streamline simulation

where δx and δy are the velocity gradients across the cell. The pathline and the time-
of-�ight can be calculated by integration of:

dτ

ϕ
=
dx

ux
=
dy

uy
. (4.1)

Assuming that the velocity changes linearly within the cell, equations (4.1) can be
integrated from point (x0, y0) to an arbitrary point (xi, yi). The index i = 1, 2 indicates
the face of the cell in each direction:

△τxi
ϕ

=

∫ xi

x0

dx

ux0 + δx(x− x0)
=

1

δx
ln(

uxi
u0

) ,

△τyi
ϕ

=

∫ yi

y0

dx

uy0 + δy(y − y0)
=

1

δy
ln(

uyi
u0

) .

Pollock's algorithm speci�es that the proper exit face is the one that presents the lowest
positive time-of-�ight, calculated through:

△τ = MinPositive{△τx1 ,△τx2 ,△τy1 ,△τy2} .

The mapping of the saturation determined from the implicit-form solution along the
streamlines to the �nite-di�erence grid and calculation of the fractional �ow of water
in the producing well are performed using the approach proposed by Batycky [21]. The
concentration of polymer in the production well is determined in a similar way. The
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Figure 4: Simulation grid

saturation and concentration averages in a cell are calculated using a weighted average
time-of-�ight over the N streamlines crossing the cell:

scell =

∑N
i=1△τissl(t)i∑N

i=1△τi
, ccell =

∑N
i=1△τicsl(t)i∑N

i=1△τi
,

where the saturation ssl(t)i and concentration csl(t)i averaged over the streamline i are
given by:

ssl(t)i =
1

△τi

∫ τib

τia

s(τ, t)idτ , csl(t)i =
1

△τi

∫ τib

τia

c(τ, t)idτ .

5 Computational Results

In order to validate the accuracy of the streamlines simulator developed, the water-
�ooding of a 500m×500m 1/4 �ve-spot pattern reservoir was calculated using a 50×50
grid. The injection well rate was �xed (=30 m3/day) and the �owing pressure of the
producer was set constant (= 7000 kPa). For each adsorption isotherm (Figs.5a and
5b) both homogeneous (kx = ky = 500 mD) and heterogeneous reservoirs (Fig.5e) were
analyzed. Relative permeability curves are calculated using the Corey relations:

kro = krowi

( 1− s− sor
1− swi − sor

)no

, krw = krwor

( s− swi
1− swi − sor

)nw

, (5.1)

where sor is the residual oil saturation, swi is the irreducible water saturation, no and
nw are constants of the model, and krowi and krwor are the endpoints of the relative
permeability curves for oil and water, respectively. The curves of fractional �ow of
water (Figs.5c and 5d) are constructed using (5.1).



114 Vicente, Priimenko, and Pires

Parameter
Rm wIm om Rc Jt Is rowik rwork f ors wis on wn

Value
5

(mPa.s)

0.5

(mPa.s)

8

(mPa.s)

0.4

(Kg/m³)

530

(day)
0.2 0.5 0.7 0.2 0.2 0.2 2 2

Table 3: Reservoir parameters

The relationship between the viscosity and concentration of the polymer slug is
assumed to be linear

µw(c) =
µR − µwI

cR
+ µwI ,

where µR is the reference viscosity of the polymer slug at the reference concentration
cR, and µwI is the viscosity of pure water. Table 3 presents other reservoir parameters.

The results obtained were compared to the commercial �nite-di�erence simulator
IMEXr, widely used in petroleum engineering. The linear adsorption isotherm and a
polymer concentration of 0.1 kg/m3 were used in the �rst simulation run. Figs.6 and 7
present the saturation and concentration maps, respectively. For the case of adsorption
governed by this isotherm the commercial simulator results present dispersion in the
vicinity of the polymer slug boundaries.

The saturation and concentration shocks are adequately captured by the streamlines
simulation. Another important issue is the numerical di�usion increase with time seen
in the �nite-di�erence simulator. In Fig.6 the smearing of the slug front caused by
numerical e�ects of the commercial software may also be veri�ed.

Fig.8 compares the water fractional �ow and the oil recovery factor for both sim-
ulators. The most important feature is the shock dissipation in the �nite-di�erence
results. In spite of these characteristics, both models are in good agreement, the max-
imum deviation between the recovery factors is about 4%.

Results for the heterogeneous case show a similar behavior (Figs.9 and 10). The
streamlines simulator was able to capture the heterogeneity trends of the reservoir,
while the commercial simulator numerical di�usion masked them. These di�erences in
the saturation and concentration maps for the heterogeneous case are not so obvious
when the water fractional �ow and oil recovery factor are observed (Fig.11).

In the case of adsorption governed by Langmuir's isotherm the polymer injection
concentration adopted was 0.4 kg/m3. Again, the �nite-di�erence method was not
able to capture correctly the saturation and concentration shocks (Figs.12 and 13).
The di�erence in the recovery factor was greater for this case, close to 8%. Maps of
saturation and concentration present similar features as for the Henry isotherm, and
will not be presented.

Another important advantage of the streamlines simulator over the conventional
�nite-di�erence model is the number of time steps necessary to obtain the pressure
convergence (Table 4).
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Figure 6: Saturation map. Case 1 - homogeneous model and Henry's adsorption
isotherm

This work IMEX

Henry isotherm
Homogeneous case 50 254

Heterogeneous case 50 263

Langmuir isotherm
Homogeneous case 50 206

Heterogeneous case 50 299

Table 4: Number of time steps
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Figure 7: Concentration map. Case 1 - homogeneous model and Henry's adsorption
isotherm
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Figure 8: Case 1 - homogeneous model and Henry's adsorption isotherm
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Figure 9: Saturation map. Case 1 - heterogeneous model and Henry's adsorption
isotherm
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Figure 10: Concentration map. Case 1 - heterogeneous model and Henry's adsorption
isotherm
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Figure 11: Case 1 - heterogeneous model and Henry's adsorption isotherm
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Figure 12: Case 2 - homogeneous model and Langmuir's adsorption isotherm

6 Conclusions

In this paper, a fast streamline method for a 2-D model describing the 2-phase oil dis-
placement by polymer slugs considering adsorption e�ects was presented. The following
conclusions can be derived:

1. A streamline simulator, capable to model the injection of polymer slugs where
adsorption is governed by the Henry and Langmuir isotherms has been developed.
The main feature of this simulator is the use of implicit-form solutions of the
transport equations along the streamlines.

2. The results showed a good agreement compared to the commercial �nite-
di�erence simulator IMEXr, both in homogeneous and heterogeneous cases.

3. Streamlines simulation allowed a smaller number of pressure solvers and implicit-
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Figure 13: Case 2 - heterogeneous model and Langmuir's adsorption isotherm

form solutions have enabled a better estimative of the saturation and concentra-
tion shocks and rarefaction waves.
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Nomenclature

a = adsorption concentration of polymer on solid phase, ML−3, kg/m3 ;
c = concentration of polymer solution, ML−3, kg/m3 ;
c = average concentration, dimensionless ;
f = water fractional �ow, dimensionless ;
f

′
s = partial derivative of the water fractional �ow with respect to saturation ;
K = absolute permeability tensor, L2, mD ;
kro = oil phase relative permeability, dimensionless ;
krowi = oil relative permeability at irreducible water saturation ;
krw = water phase relative permeability, dimensionless ;
krwor = water relative permeability at residual oil saturation ;
no = oil Corey exponent, dimensionless ;
nw = water Corey exponent, dimensionless ;
N = streamline number in a cell ;
P = pressure, MT−2L−1, kPa
qJ = injection rate, L3T−1, m3/day ;
Q = injection/production total rate, L3T−1, m3/day ;
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s = water saturation, dimensionless ;
sor = residual oil saturation, dimensionless ;
swi = irreducible water saturation, dimensionless ;
s = average saturation, dimensionless ;
t = time, days ;
u = total Darcy velocity, LT−1, m/day ;
Vk = velocity of discontinuity k, dimensionless ;
Γ = Henry's isotherm constant, dimensionless ;
Γ1 = Langmuir's isotherm constant, dimensionless ;
Γ2 = Langmuir's isotherm constant, L3M−1, m3/kg ;
△τi = time-of-�ight di�erence between the entry and exit in a cell for streamline i, T,
days ;
λ = mobility, L3TM−1, mD/Pa.s ;
µo = oil viscosity, ML−1T−1, Pa.s ;
µR = reference viscosity, ML−1T−1, Pa.s ;
µw = polymer solution viscosity, ML−1T−1, Pa.s ;
µwI = pure water viscosity, ML−1T−1, Pa.s ;
ζ = coordinate along streamline, T, days ;
ξ = self-similar variable, dimensionless ;
τ = time-of-�ight, T, days
τia = time-of-�ight of entry in a cell for streamline i, T, days ;
τib = time-of-�ight of exit in a cell for streamline i, T, days ;
τl = path of discontinuity l, T, days ;
ϕ = porosity, dimensionless ;
χ = streamfunction, L, m ;
ψ = streamfunction, L2T−1, m2/day ;
Subscripts:
cell = cell ;
I = initial ;
J = injection ;
o = oil ;
r = relative ;
R = reference ;
sl = streamline ;
w = water ;
Superscripts:
+ = value ahead of discontinuity ;
− = value behind the discontinuity .
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