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Abstract A problem of waves excited by an arbitrary oriented impulsive point force
is investigated for a linear system of viscoelasticity equations. It is assumed that the
medium is heterogeneous, isotropic and its properties depend on the prehistory of a
wavy process. We suppose that the modulus of elasticity is expressed as the sum of
two items. The �rst one is a function of space variables and the second item presents
an integral operator of convolution type with respect to time. The structure of the
solution to the Cauchy problem for a system of viscoelasticity equations is examined.
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1 Introduction, main result

At the beginning of the last century J.Hadamard o�ered a method to solve a Cauchy
problem for second order general hyperbolic equations. (see [4]). The solution is based
on the series expansion using some in�nite system of functions. These functions depend
on the square of a distance in pseudo-Riemannian metrics. This metric is naturally
associated with a di�erential equation. The main point of the method and its mod-
ern formulation can be found in Babich's paper [1]. In Sobolev's works [8, 9] another
method of construction the solution to the Cauchy problem is developed. It is based
on an integral equation that is equivalent to the initial problem. The attempt to ap-
ply the J. Hadamard method to systems of hyperbolic equations with di�erent speeds
of waves leads Babich to creation of the ray method. This method is also based on
the expansion of a solution on some unlimited system of functions, but in contrast to
Hadamard's series, here some more general function γ(x, t) participates as an argu-
ment. This function satis�es characteristic equation. So as this equation has, as a rule,
some real roots, each root has its own expansion that is similar to J. Hadamard's expan-
sion. Based on plane-wave expansions and their subsequent summation, V.M.Babich
builds fundamental solutions for Petrovskiy systems of hyperbolic equations [2] and
for equations of elasticity [3]. A singular part of a fundamental solution is written out
explicitly for equations of elasticity. This part is a main component that represents the
sum of the delta-functions multiplied by some factors. These functions are located on
characteristic cones.

In the paper [6] the ray expansion is taken out for a system of elasticity equations.
The ray expansion is based, in essence, on Babich's method. Here the function γ(x, t)
has a form of a conical wave. In this case derivatives of the function γ(x, t)are not
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continuous and the higher a derivatives' order has the more a singularity order in a
vicinity of cone's top. The last one induces di�culties when receiving explicit formulas
of an asymptotic expansion. The situation becomes simpler by assumption that the
medium is homogeneous in some vicinity of a source. Thereafter the solution is written
out explicitly for su�ciently small spacy-temporal vicinity of the points where a point
impulsive force is applied. In fact, the problem reduces to the extension of the solution
outside this vicinity. Thus it is possible to describe in details the structure of not only
singular part of the solution, but also its regular part. Particularly, it is possible to
calculate a jump of the solution and all its derivatives, when passing through charac-
teristic surfaces, which are responsible for compressive and transverse waves. The last
one is actual in the inverse problems research area ([7]).

Below, the construction of asymptotic formulas to the solution of linear viscoelas-
ticity equations is given for an arbitrary directed concentrated impulsive force. More
precisely, the following Cauchy problem is considered:.

Mu ≡ ρ(x)utt − Lu = f 0δ(x− y, t), u|t<0 ≡ 0. (1.1)

Here u = (u1, u2, u3) is a vector of elastic displacement, f
0 = (f 0

1 , f
0
2 , f

0
3 ) is a numerical

vector characterizing the direction of the force, an operator L = (L1, L2, L3, ) is de�ned
by the equations

Liu =
3∑
j=1

∂σij(u)

∂xj
, σij(u) = λ(x)δijdivu(x, t) + µ(x)

(
∂ui(x, t)

∂xj
+
∂uj(x, t)

∂xi

)

+

t∫
−∞

[
p(x, t− s)δijdivu(x, s) + q(x, t− s)

(
∂ui(x, s)

∂xj
+
∂uj(x, s)

∂xi

)]
ds, i, j = 1, 2, 3.(1.2)

In these equations δij is Kronecker's symbol, λ(x), µ(x) are elastic modules, ρ(x) is the
density of area, functions p(x, t), q(x, t) characterize the viscoelasticity.

In the sequel, suppose that λ(x) + µ(x) > 0, µ(x) > 0, ρ(x) > 0.
In the case of homogeneous medium when ρ, λ, µ are constants, p = q = 0, problem

(1.1) has been solved by Love [5]. The solution is given by the formula ([6] �5)

u(x, t, y) =
f 0

4πρ c2s|x− y|
δ
(
t− τs(x, y)

)
+

1

4πρ
∇div

{ f 0

|x− y|
[
θ1
(
t− τp(x, y)

)
− θ1

(
t− τs(x, y)

)]}
, (1.3)

where

τp(x, y) =
|x− y|
cp

, cp =

√
λ+ 2µ

ρ
, τs(x, y) =

|x− y|
cs

, cs =

√
µ

ρ
,

cp, cs are constant and they de�ne speed of the compressive and transverse waves,
θ1(t) = tθ0(t), θ0(t) is Heaviside's function: θ0(t) = 1 for t ≥ 0 and θ0(t) = 0 for t < 0.
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By calculating operations div and ∇, we see that the formula (1.3) can be expressed
as

u(x, t, y) =
1

4πρ

{ (f 0 · ν)ν
c2p|x− y|

δ
(
t− τp(x, y)

)
+
ν × (f 0 × ν)

c2s|x− y|
δ
(
t− τs(x, y)

)
+
2(f 0 · ν)ν − ν × (f 0 × ν)

|x− y|2
[ 1
cp
θ0

(
t− τp(x, y)

)
− 1

cs
θ0
(
t− τs(x, y)

)]
+
2(f 0 · ν)ν − ν × (f 0 × ν)

|x− y|3
[
θ1
(
t− τp(x, y)

)
− θ1

(
t− τs(x, y)

)]}
, (1.4)

where ν = (x− y)/|x− y|.
Let us consider an in�nite system of functions resulting from Heaviside's function

by integration and di�erentiation:

θk(t) =
tk

k!
θ0(t), k = 1, 2, . . . , θ−k(t) =

dk

dtk
θ0(t) = δ(k−1)(t), k = 1, 2, . . . .

We notice that the functions of this system at any k = 0,±1,±2, . . . , satisfy equality
θ′k(t) = θk−1(t). Let

cp(x) =

√
λ(x) + 2µ(x)

ρ(x)
, cs(x) =

√
µ(x)

ρ(x)
,

be speeds of compressive and transverse waves in a inhomogeneous medium. Further,
we suppose that λ(x), µ(x), ρ(x), p(x, t), q(x, t) are in�nitely di�erentiable functions
of their arguments and cp(x) > cs(x) > 0, ρ(x) > 0 for all x ∈ R3. Then suppose that
the parameters λ(x), µ(x), ρ(x) are constant in some ε vicinity of the point y, and
p(x, t) = q(x, t) = 0 for |x− y| < ε, t ≥ 0.

De�ne two Riemannian's metric using the element's length dτp = |dx|/cp(x) and
dτs = |dx|/cs(x), in this case |dx| is an element's length in Euclidean metric. Let
Γp(x, y), Γs(x, y) be geodesic lines linking points x and y; τp(x, y) and τs(x, y) be
Riemannian's lengths. Suppose that these two metrics are simple, i.e. functions τp(x, y)
and τs(x, y) are uniquely de�ned. Formula (1.4) for a homogeneous medium, in which
ρ = ρ(y), cp = cp(y), cs = cs(y), can be represented as a �nite ray expansion

u(x, t, y) =
1∑

k=−1

[
α(k,p)(x, y) θk(t− τp(x, y)) + α(k,s)(x, y) θk(t− τs(x, y))

]
, (1.5)

where the coe�cients α(k,p)(x, y) are given by

α(−1,p)(x, y) = −(f 0 · ∇yτp(x, y))∇τp(x, y)
4πρ(y) cp(y)τp(x, y)

,

α(0,p)(x, y) =
∇τp(x, y)× (f 0 ×∇yτp(x, y))− 2(f 0 · ∇yτp(x, y))∇τp(x, y)

4πρ(y) cp(y)τ 2p (x, y)
, (1.6)

α(1,p)(x, y) =
∇τp(x, y)× (f 0 ×∇yτp(x, y))− 2(f 0 · ∇yτp(x, y)))∇τp(x, y)

4πρ(y) cp(y)τ 3p (x, y)
,
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,
and the coe�cients α(k,s)(x, y) are given by

α(−1,s)(x, y) = −∇τs(x, y)× (f 0 ×∇yτs(x, y))

4πρ(y) cs(y)τs(x, y)
,

α(0,s)(x, y) =
2(f 0 · ∇yτs(x, y))∇τs(x, y)−∇τs(x, y)× (f 0 ×∇yτs(x, y))

4πρ(y) cs(y)τ 2s (x, y)
, (1.7)

α(1,s)(x, y) =
2(f 0 · ∇yτs(x, y))∇τs(x, y)−∇τs(x, y)× (f 0 ×∇yτs(x, y))

4πρ(y) cs(y)τ 3s (x, y)
.

By the assumption that the medium is homogeneous in the vicinity of a source, the
solution of (1.1) coincides with the solution for a homogeneous area in a su�ciently
small vicinity of the point (y, 0).

Enter some additional notations. Let α = (α1, α2, α3) be a vector, which depends
on the spatial variables x and y, and τ be a scalar function of the same variables. Note
via κmij (α, τ) the superposition of functions of x and y, and de�ne them for i, j = 1, 2, 3
and integer values of m, by the equalities

κ0ij(α, τ) = −λ(x)δij(α · ∇τ)− µ(x)
(
αi
∂τ

∂xj
+ αj

∂τ

∂xi

)
,

κ1ij(α, τ) = λ(x)δijdivα + µ(x)
(∂αi
∂xj

+
∂αj
∂xi

)
−p0(x)δij(α · ∇τ)− q0(x)

(
αi
∂τ

∂xj
+ αj

∂τ

∂xi

)
, (1.8)

κmij (α, τ) = p(m−2)(x)δijdivα + q(m−2)(x)
(∂αi
∂xj

+
∂αj
∂xi

)
−p(m−1)(x)δij(α · ∇τ)− q(m−1)(x)

(
αi
∂τ

∂xj
+ αj

∂τ

∂xi

)
, m ≥ 2,

where

pm(x) =
∂mp(x, t)

∂tm

∣∣∣
t=0
, qm(x) =

∂mq(x, t)

∂tm

∣∣∣
t=0
.

Further, let Q(n,p), Q(n,s) be vector-functions, which components Q
(n,p)
i , Q

(n,s)
i for n =

1, 2, . . . are calculated by following formulas:

Q
(n,p)
i (α, τ) = −

3∑
j=1

n+1∑
m=2

[
κmij (α

(n−m,p), τp)
∂τp
∂xj

− ∂

∂xj
κm−1
ij (α(n−m,p), τp)

]
,

Q
(n,s)
i (α, τ) = −

3∑
j=1

n+1∑
m=2

[
κmij (α

(n−m,s), τs)
∂τs
∂xj

− ∂

∂xj
κm−1
ij (α(n−m,s), τs)

]
, (1.9)

i = 1, 2, 3.

Assume that the Q(0,p) = 0, Q(0,s) = 0.
Let

ζp = (ζp1 , ζ
p
2 , ζ

p
3 ) = −c2p(y)τp(x, y)∇yτp(x, y)
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and
ζs = (ζs1 , ζ

s
2 , ζ

s
3) = −c2s(y)τs(x, y)∇yτs(x, y)

be Riemannian's coordinates of x with respect to y in the metrics dτp = |dx|/cp(x),
dτs = |dx|/cs(x) respectively, and Jp(x, y) = det(∂ζ

p

∂x
), Js(x, y) = det(∂ζ

s

∂x
) be Jacobians

of transformations of Riemannian's coordinates to cartesian ones. De�ne a scalar
function A(p)(x, y) and a matrix T (s)(x, y) with equalities

A(p)(x, y) =

√
Jp(x, y)

4πτp(x, y)c2p(y)
√
ρ(x)ρ(y)

exp
(1
2

∫
Γp(x,y)

p0(ξ) + 2q0(ξ)

λ(ξ) + 2µ(ξ)
dτ ′p

)
, (1.10)

T (s)(x, y) =
S(x, y)

√
Js(x, y)

4πτs(x, y)c2s(y)
√
ρ(x)ρ(y)

exp
(1
2

∫
Γs(x,y)

q0(ξ)

µ(ξ)
dτ ′s

)
. (1.11)

In these equalities ξ is a variable point of geodesics Γp(x, y), Γs(x, y), and τ
′
p = τp(ξ, y),

τ ′s = τs(ξ, y), respectively, S(x, y) is the matrix exponent

S(x, y) = exp
{ ∫
Γs(x,y)

(∇ ln cs(ξ))
t dξ
}
. (1.12)

Here (∇ ln cs(ξ))
t is a column vector, and dξ = (dξ1, dξ2, dξ3) is a row vector, and

multiplication of these vectors is performed according to rules of matrix algebra.

Theorem 1.1. Let the above assumptions for functions λ(x), µ(x), ρ(x), p(x, t), q(x, t)
hold. Then the solution of (1.1) can be represented in the form of asymptotic series:

u(x, t, y) =
∞∑

k=−1

[
α(k,p)(x, y) θk(t− τp(x, y)) + α(k,s)(x, y) θk(t− τs(x, y))

]
,(1.13)

where α(k,p)(x, y), α(k,s)(x, y) are functions of the class C∞(R6 \ {(y, y)}) de�ned by
(1.6), (1.7) for |x− y| < ε, and given for |x− y| > ε by formulas

α(k,p)(x, y) = cp(x)[A
(k,p)(x, y)∇τp(x, y) +∇τp(x, y)×B(k,p)(x, y)],

α(k,s)(x, y) = cs(x)[A
(k,s)(x, y)∇τs(x, y) +∇τs(x, y)×B(k,s)(x, y)],

where

A(−1,p)(x, y) = −(f 0 · ∇yτp(x, y))A
(p)(x, y), B(−1,p)(x, y) = 0,

B(−1,s)(x, y) = −(f 0 ×∇yτs(x, y))T
(s)(x, y), A(−1,s)(x, y) = 0,

and subsequent coe�cients are calculated by using following recursion formulas:

A(n−1,p)(x, y) =
[A(n−1,p)(ξp(x, y), y)

A(p)(ξp(x, y), y)
+

∫
Γp(x,ξp(x,y))

R(n,p)(ξ, y)

2A(p)(ξ, y)
dτp

]
A(p)(x, y), n ≥ 1,

B(n,p)(x, y) =
λ+ 2µ

ρ(λ+ µ)

(
cpQ

(n,p) ×∇τp − [µ∆τp +∇µ · ∇τp − q0c
−2
p ]B(n−1,p)

−cp
[
2µ(∇τp · ∇)α(n−1,p) +∇

(
(λ+ µ)c−1

p A(n−1,p)
)
− c−1

p A(n−1,p)∇µ
]
×∇τp

)
, n ≥ 0,
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B(n−1,s)(x, y) =
[
B(n−1,s)(ξs(x, y), y)T

(s)(ξs(x, y), y)

+
1

2

∫
Γs(x,ξs(x,y))

R(n,s)(ξ, y)T (s)(ξ, y) dτp

]
(T (s))−1(x, y), n ≥ 1,

A(n,s)(x, y) =
c2s

λ+ µ
{[(λ+ µ)divα(n−1,s) +∇µ · α(n−1,s) − (p0 + q0)c

−1
s A(n−1,s)]c−1

s

+[µ∆τs +∇µ · ∇τs − q0c
−2
s ]A(n−1,s) + [2µcs(∇τs · ∇)α(n−1,s)

+cs∇
(
(λ+ µ)c−1

s A(n−1,s)
)
− A(n−1,s)∇µ− csQ

(n,s)] · ∇τs}, n ≥ 0.

In these formulas ξp(x, y), ξs(x, y) are the intersection points of geodesics Γp(x, y)
and Γs(x, y) with the sphere |x− y| = ε, respectively, scalar functions R(n,p) and R(n,s)

are de�ned by the equalities

R(n,p) =
1

ρ

(
cpQ

(n,p) · ∇τp − [(λ+ µ)c−1
p div(cp∇τp ×B(n−1,p))

+∇µ · (∇τp ×B(n−1,p)) + 2µ(∇τp ×B(n−1,p)) · ∇ ln cp]
)
,

R(n,s) =
1

ρ
{csQ(n,s) + A(n−1,s)[(λ+ 2µ)∇ ln cs −∇λ]− (λ+ µ)∇A(n−1,s)} × ∇τs,

moreover,

A(n−1,p)(ξp(x, y), y)

A(p)(ξp(x, y), y)
= −2(f 0 · ∇yτp(x, y))[cp(y)]

n

|ξp(x, y)− y|n

{
1, n = 1, 2,
0, n > 2,

B(n−1,s)(ξs(x, y), y)T
(s)(ξs(x, y), y) = −(f 0 ×∇yτs(x, y))[cs(y)]

n

|ξs(x, y)− y|n

{
1, n = 1, 2,
0, n > 2.

Remark 1.1. Asymptotic series (1.13) is an expansion "by the smoothness", (the term
belongs V. M. Babich, see his work [1]) in the vicinity of the characteristic cones.

This series allows us to calculate the singular part of the solution and jumps of
derivatives of any order on the characteristic cones t = τp(x, y) and t = τs(x, y). The
jumps of of derivatives of order m ≥ 0 are expressed in terms of coe�cients α(k,p)(x, y),
α(k,s)(x, y) for k ≤ m. In particular,[

∂mu(x, t, y)

∂tm

]
t=τp(x,y)

= α(m,p)(x, y),

[
∂mu(x, t, y)

∂tm

]
t=τs(x,y)

= α(m,s)(x, y).

Remark 1.2. In the case where the coe�cients of elasticity equations have a �nite,
but su�ciently high smoothness, we can write only the �nite number of terms in the
asymptotic (1.13), and the residue can be estimated by using the standard method of
energy estimates.

A structure of the article is as following. In Section 2, for the reader convenience,
there are some basic information about the formulas and concepts of Riemannian's
geometry. In section 3, the basic relations of the ray method are derived. In sec-
tions 4 and 5, formulas calculating coe�cients α(k,p) and α(k,s) of the series (1.13) are
established.
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2 Some facts from Riemannian's geometry

We have already had two Riemannian's metrics, linked with speeds of compressive
cp(x) and transverse cs(x) waves. It is convenient to set out the series of the facts and
suitable notations for some arbitrary isotropic Riemannian's metrics. The element of
length is de�ned by the formula dτ = |dx|/c(x). Here c(x) is a smooth and positive
function de�ned on any compact domain of the space R3 . Further we will use these
facts for c = cp and c = cs, providing relevant indices to p or s.

Associate the Riemannian's distance τ(x, y) between arbitrary two points x and y.
Assume that the function τ(x, y) is de�ned uniquely. In this case, each pair of points
x, y corresponds to a unique geodesic Γ(x, y) that joins them. As a positive direction
on Γ(x, y) we take direction from y to x.

The function τ(x, y) satis�es the �rst order di�erential equations

c(x)|∇xτ(x, y)| = 1, c(y)|∇yτ(x, y)| = 1, (2.1)

and to the additional condition

τ(x, y) ∼ |x− y|
c(y)

, x→ y. (2.2)

In sequel, assume that ∇x = ∇. For a known function τ(x, y) de�ned along a geodesic
Γ(x, y) we have

dx

dτ
= c2(x)∇τ(x, y), (2.3)

where the parameter τ is numerically equal to Riemannian's length τ(x, y). It fol-
lows from (2.3) that the vector ∇τ(x, y) is directed at x tangentially to Γ(x, y). The
derivative of the function φ(x) with respect to τ along to Γ(x, y) is given by

dφ(x)

dτ
= ∇φ(x) · dx

dτ
= c2(x)∇τ(x, y) · ∇φ(x). (2.4)

Derivatives of the function τ(x, y) are smooth everywhere, except the point x = y.
Then, �rst order derivatives are bounded but not continuous at the point x = y.
Derivatives of order k > 1 grow inde�nitely in the vicinity of this point, with the rate
of growth O(|x− y|1−k). In contrast, the function τ 2(x, y) is smooth everywhere with
respect to variables x and y and belongs to class Ck(R6) if c(x) ∈ Ck(R3), k ≥ 2.
Further, we suppose that c(x) ∈ C∞(R3).

Consider the Riemannian's coordinates ζ = (ζ1, ζ2, ζ3) of point x for a �xed point
y, determining with equality ζ = −c2(y)τ(x, y)∇yτ(x, y). From equalities (2.1), (2.3)
it is clear that ζ = c(y)τ(x, y)ν0 where ν0 is the unit tangent vector to Γ(x, y) at the
point y. The direction of this vector corresponds to the positive direction of Γ(x, y),
i.e from y to x. From the above, it follows that ζ(x, y) ∈ C∞(R6) as x→ y.

Fix x and y. Let ξ be an arbitrary point of Γ(x, y). Equation of the geodesic Γ(x, y)
can be written in the form ξ = f(zζ, y), where f(ζ, y) is some function of class C∞(R6)
and z is a dimensionless parameter, and z = τ(ξ, y)/τ(x, y). In particular, when z = 1,
we get that x = f(ζ, y). Note that f(ζ, y) = y + ζ +O(|ζ|2) as ζ → 0.
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For the future, note one important formula (the deduction can be found in [7]):

c2∆τ 2 = 6− c2∇τ 2 · ∇ ln(c2J), x ∈ R3. (2.5)

Here J = J(x, y) is the Jacobian of transition from Riemannian's coordinates of x to
cartesian ones:

J(x, y) = det
(∂ζ
∂x

)
∈ C∞(R6), J(y, y) = 1. (2.6)

From (2.5) follows the formula

c2∆τ =
2

τ
− c2∇τ · ∇ ln(c2J), x ∈ R3. (2.7)

3 The deduction of main relations

The solution to (1.1) is represented in the form of asymptotic series

u(x, t, y) =
∞∑

k=−1

[
α(k,p)(x, y)θk(t− τp(x, y)) + α(k,s)(x, y)θk(t− τs(x, y))

]
. (3.1)

For the convenience of further calculations, let us set α(k,p) = α(k,s) = 0 for k < −1.
We should count the value of di�erential operator M (see (1.1)) at the function

u(x, t, y). To avoid the same type of calculations, for the moment, we will determine
the value of this operator at the some simple function v(x, t, y), which is de�ned below.
For this aim, let us regard Riemannian's metric that is de�ned in the Section 2 with
an element of length dτ = |dx|/c(x), c(x) > 0, and corresponding function τ(x, y) as
Riemannian's distance between x and y points. De�ne the function v(x, t, y) by the
formula, which is similar to (3.1),

v(x, t, y) =
∞∑

n=−1

αn(x, y)θn(γ), γ = t− τ(x, y).

The following equalities hold:

σij(α
nθn(γ)) =

∞∑
m=0

κmij (α
n, τ)θn+m−1(γ),

Where κmij (α, τ), α = (α1, α1, α1) are de�ned by

κ0ij(α, τ) = −λ(x)δij(α · ∇τ)− µ(x)
(
αi
∂τ

∂xj
+ αj

∂τ

∂xi

)
,

κ1ij(α, τ) = λ(x)δijdivα + µ(x)
(∂αi
∂xj

+
∂αj
∂xi

)
−p0(x)δij(α · ∇τ)− q0(x)

(
αi
∂τ

∂xj
+ αj

∂τ

∂xi

)
,

κmij (α, τ) = −p(m−1)(x)δij(α · ∇τ)− q(m−1)(x)
(
αi
∂τ

∂xj
+ αj

∂τ

∂xi

)
+p(m−2)(x)δijdivα + q(m−2)(x)

(∂αi
∂xj

+
∂αj
∂xi

)
, m ≥ 2, (3.2)
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where

pm(x) =
∂mp(x, t)

∂tm

∣∣∣
t=0
, qm(x) =

∂mq(x, t)

∂tm

∣∣∣
t=0
.

Then

Li(α
nθn(γ)) =

3∑
j=1

∞∑
m=0

(
− θn+m−2(γ)κ

m
ij (α

n, τ)
∂τ

∂xj
+ θn+m−1(γ)

∂

∂xj
κmij (α

n, τ)
)
.

On the other hand,

∂2vi
∂t2

=
∞∑

n=−1

αni θn−2(γ), i = 1, 2, 3

Using these formulas, let �nd

ρ
∂2vi
∂t2

− Liv =
3∑
j=1

∞∑
n=−1

∞∑
m=0

qmij (α
n, τ)θn+m−2(γ), i = 1, 2, 3. (3.3)

In this formula

q0ij(α, τ) = ραiδij + κ0ij(α, τ)
∂τ

∂xj
,

qmij (α, τ) = κmij (α, τ)
∂τ

∂xj
− ∂

∂xj
κm−1
ij (α, τ), m ≥ 1. (3.4)

We can rewrite the equalities (3.3) as

ρ
∂2vi
∂t2

− Liv =
∞∑
k=0

rki θk−3(γ), i = 1, 2, 3, (3.5)

where

rki =
3∑
j=1

k∑
m=0

qmij (α
k−m−1, τ), i = 1, 2, 3, k ≥ 0. (3.6)

According to formulas (3.3)-(3.6) we have:

ρ
∂2ui
∂t2

− Liu =
∞∑
k=0

[
r
(k,p)
i θk−3(γp) + r

(k,s)
i θk−3(γs)

]
, i = 1, 2, 3, (3.7)

where r
(k,s)
i , r

(k,s)
i , γp, γs are de�ned by equalities

r
(k,p)
i =

3∑
j=1

k∑
m=0

qmij (α
(k−m−1,p), τp), γp = t− τp(x, y), (3.8)

r
(k,s)
i =

3∑
j=1

k∑
m=0

qmij (α
(k−m−1,s), τs), γs = t− τs(x, y), (3.9)
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and qmij (α, τ) are given by formulas (3.4).

Having ρ∂
2ui
∂t2

− Liu = 0 for t > 0, the following equalities should satisfy

r
(k,p)
i = 0, i = 1, 2, 3, k = 0, 1, 2, . . . , (3.10)

r
(k,s)
i = 0, i = 1, 2, 3, k = 0, 1, 2, . . . . (3.11)

These equalities are used to calculate α(n,p), α(n,s), n ≥ −1.

4 Coe�cients α(k,p) calculation

First, let us consider the group of equalities (3.10). Suppose k = 0. Then r
(0,p)
i = 0,

i = 1, 2, 3 and to �nd α(−1,p) we get the system of homogeneous equations

ρα
(−1,p)
i +

3∑
j=1

κ0ij(α
(−1,p), τp)

∂τp
∂xj

= 0, i = 1, 2, 3, (4.1)

where

κ0ij(α
(−1,p), τp) = −λ(x)δij(α(−1,p) · ∇τp)− µ(x)

(
α
(−1,p)
i

∂τp
∂xj

+ α
(−1,p)
j

∂τp
∂xi

)
.

It is easier to work with equalities (4.1), via representing them as one vector equality.
Notice that,

3∑
j=1

κ0ij(α
(−1,p), τp)

∂τp
∂xj

= −(λ+ µ)(α(−1,p),∇τp)
∂τp
∂xi

− µc−2
p α

(−1,p)
i . (4.2)

When deriving this formula the equality |∇τp|2 = c−2
p is used. Taking into

account(4.2), let us write equalities (4.1) as

(ρ− µc−2
p )α(−1,p) − (λ+ µ)(α(−1,p) · ∇τp)∇τp = 0. (4.3)

It is easy to check that the equations (4.1) are linearly dependent ones. Indeed,
taking scalar product both sides of equation (4.3) and ∇τp and using the equality
c−2
p = ρ/(λ+2µ), we obtain zero. It also means that projection of vector α(−1,p) to the
direction ∇τp can not be found from the system (4.1).

Let us show that the projection of this vector to a plane that is orthogonal to the
vector ∇τp is de�ned by the equality (4.3) uniquely and it is equal to zero. Indeed, any
vector α(n,p) can be represent in the form

α(n,p) = cp(x)[A
(n,p)∇τp +∇τp ×B(n,p)], B(n,p) · ∇τp = 0, (4.4)

where the scalar A(n,p) and the vector B(n,p) are calculated as

A(n,p) = cp(x)(α
(n,p) · ∇τp), B(n,p) = cp(x)(α

(n,p) ×∇τp). (4.5)
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Multiplying the equality (4.3) by cp∇τp, we get following expression:

(ρ− µc−2
p )B(−1,p) = 0. (4.6)

So as ρ−µc−2
p = ρ(λ+µ)/(λ+2µ) > 0, then from this equality follows, that B(−1,p) = 0.

The quantity A(−1,p) remains inde�nite. In order to calculate it, we use equality (3.10)
with k = 1. In expanded form it can be written as

3∑
j=1

[
κ1ij(α

(−1,p), τp)
∂τp
∂xj

− ∂

∂xj
κ0ij(α

(−1,p), τp) + ρα
(0,p)
i δij + κ0ij(α

(0,p), τp)
∂τp
∂xj

]
= 0, (4.7)

i = 1, 2, 3.

There according formulas (3.2),

κ0ij(α
(−1,p), τp) = −λδij(α(−1,p) · ∇τp)− µ

(
α
(−1,p)
i

∂τp
∂xj

+ α
(−1,p)
j

∂τp
∂xi

)
,

κ0ij(α
(0,p), τp) = −λδij(α(0,p) · ∇τp)− µ

(
α
(0,p)
i

∂τp
∂xj

+ α
(0,p)
j

∂τp
∂xi

)
,

κ1ij(α
(−1,p), τp) = λδijdivα

(−1,p) + µ
(∂α(−1,p)

i

∂xj
+
∂α

(−1,p)
j

∂xi

)
−p0δij(α(−1,p) · ∇τp)− q0

(
α
(−1,p)
i

∂τp
∂xj

+ α
(−1,p)
j

∂τp
∂xi

)
.

Let us write the system of equality (4.7) in a vector form. Notice, that �rst sum-
mand on the left-hand side of the formula (4.7) can be written in the form

3∑
j=1

κ1ij(α
(−1,p), τp)

∂τp
∂xj

= λdivα(−1,p)∂τp
∂xi

+ µ(∇τp · ∇)α
(−1,p)
i +

∂

∂xi
(µα(−1,p) · ∇τp)

−µ(α(−1,p) · ∇)
∂τp
∂xi

− (α(−1,p) · ∇τp)
∂µ

∂xi
− (p0 + q0)(α

(−1,p) · ∇τp)
∂τp
∂xi

− q0c
−2
p α

(−1,p)
i .(4.8)

Let us transform second summand of the formula (4.7) as follows

−
3∑
j=1

∂

∂xj
κ0ij(α

(−1,p), τp) =
∂

∂xi

(
λα(−1,p) · ∇τp

)
+ µ(∇τp · ∇)α

(−1,p)
i

+µ
(
α
(−1,p)
i ∆τp + divα(−1,p)∂τp

∂xi
+ (α(−1,p) · ∇)

∂τp
∂xi

)
+(∇µ · ∇τp)α(−1,p)

i +∇µ · α(−1,p)∂τp
∂xi

. (4.9)

Using equalities (4.5), (4.8), (4.9), we can write quantity (4.7) in vector form:

[(λ+ µ)divα(−1,p) +∇µ · α(−1,p) − (p0 + q0)c
−1
p A(−1,p)]∇τp

+[µ∆τp +∇µ · ∇τp − q0c
−2
p ]α(−1,p) + 2µ(∇τp · ∇)α(−1,p)

+∇
(
(λ+ µ)c−1

p A(−1,p)
)
− c−1

p A(−1,p)∇µ
+(ρ− µc−2

p )α(0,p) − (λ+ µ)c−1
p A(0,p)∇τp = 0. (4.10)
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Replace the equality (4.10) by its projections to vector ∇τp and to a plane that is
orthogonal to this vector.

Multiplying equality (4.10) by cp∇τp we get:

[(λ+ µ)divα(−1,p) +∇µ · α(−1,p)]c−1
p + [µ∆τp − c−2

p (p0 + 2q0)]A
(−1,p)

+2µ
[
∇τp · ∇A(−1,p) − α(−1,p) · (∇τp · ∇)(cp∇τp)

]
+cp∇

(
(λ+ µ)c−1

p A(−1,p)
)
· ∇τp = 0. (4.11)

Because the following equalities

α(−1,p) · (∇τp · ∇)(cp∇τp) = (α(−1,p) · ∇τp)(∇τp · ∇cp) + cpα
(−1,p) · (∇τp · ∇)∇τp

= A(−1,p)(∇τp · ∇ ln cp)− c−1
p (α(−1,p) · ∇ ln cp),

cp∇
(
(λ+ µ)c−1

p A(−1,p)
)
· ∇τp = (λ+ µ)∇A(−1,p) · ∇τp + A(−1,p)∇(λ+ µ) · ∇τp

−A(−1,p)(λ+ µ)∇ ln cp · ∇τp

hold, then equality (4.11)is equivalent to the following

(λ+ 3µ)∇A(−1,p) · ∇τp + [(λ+ µ)divα(−1,p) +∇µ · α(−1,p) + 2µα(−1,p) · ∇ ln cp]c
−1
p

+[µ∆τp +∇(λ+ µ) · ∇τp − (λ+ 3µ)∇τp · ∇ ln cp − (p0 + 2q0)c
−2
p ]A(−1,p) = 0.(4.12)

Substitute α(−1,p) = A(−1,p)cp∇τp into this formula. Then the equality (4.12) takes
the form:

2(λ+ 2µ)(∇A(−1,p) · ∇τp) + A(−1,p)[(λ+ 2µ)∆τp

+∇(λ+ 2µ) · ∇τp − (cp)
−2(p0 + 2q0)] = 0. (4.13)

Dividing this equality by ρ, we get its another form

2c2p(∇A(−1,p) · ∇τp) + A(−1,p)[c2p∆τp + c2p∇ ln(c2pρ) · ∇τp − b1] = 0. (4.14)

Here b1 = (cp)
−2(p0 + 2q0)/ρ = (p0 + 2q0)/(λ+ 2µ).

Notice, that due to the formula (2.4) a di�erentiation of some function φ(x) with
respect to τp along Γp(x, y) is prescribed by the formula

dφ(x)

dτp
= ∇φ(x) · dx

dτp
= c2p(x)∇τp(x, y) · ∇φ(x). (4.15)

Note one more formula

c2p∆τp =
2

τp
− c2p∇τp · ∇ ln(c2pJp), x ∈ R3, (4.16)

which corresponds to the equality (2.7).
Due to formulas (4.15), (4.16) we get

2
∂A(−1,p)

∂τp
+ A(−1,p)

[ 2
τp

+
∂

∂τp

(
ln

ρ

Jp

)
− b1

]
= 0. (4.17)
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The latter equation can be written in the following way

∂

∂τp

[
A(−1,p) τp

√
ρ√
Jp

exp
(
− 1

2

∫
Γp(x,y)

b1(ξ) dτ
′
p

)]
= 0. (4.18)

This equality means that expression in squared brackets in the formula (4.18) must be
constant along a geodesic line Γp(x, y), i.e.

A(−1,p)(x, y)
τp(x, y)

√
ρ(x)√

Jp(x, y)
exp

(
− 1

2

∫
Γp(x,y)

b1(ξ) dτ
′
p

)
= C1. (4.19)

Let us choose a constant C1 such that the main components of decomposition (1.5) for
homogeneous medium with cp = cp(y), ρ = ρ(y) and decomposition (3.1) for inhomo-
geneous medium coincide at the neighborhood of the point y. It follows from (4.19)
that

C1 =
√
ρ(y) lim

x→y
[τp(x, y)A

(−1,p)(x, y)], (4.20)

where the limit is calculated along the geodesic Γp(x, y). On the other hand, this limit
can be calculated via formulas (1.5), (1.6). For this aim one should compare formulas
(4.4) and (4.5) As a result, we found

lim
x→y

[τp(x, y)A
(−1,p)(x, y)] = − 1

4πρ(y)
lim
x→y

(f 0 · ∇yτp)

cp(x)cp(y)
=

(f 0 · ν0p)
4πc3p(y)ρ(y)

. (4.21)

Here ν0p = −cp(y)∇yτp is a unit vector tangent to Γp(x, y) at y, which is positively
directed. Then,

C1 =
(f 0 · ν0p)

4πc3p(y)
√
ρ(y)

= − (f 0 · ∇yτp)

4πc2p(y)
√
ρ(y)

. (4.22)

The formula (4.19) leads to the equality

A(−1,p)(x, y) = −(f 0 · ∇yτp(x, y))A
(p)(x, y), (4.23)

where

A(p)(x, y) =

√
Jp(x, y)

4πτp(x, y)c2p(y)
√
ρ(x)ρ(y)

exp
(1
2

∫
Γp(x,y)

p0(ξ) + 2q0(ξ)

λ(ξ) + 2µ(ξ)
dτ ′p

)
, (4.24)

So,

α(−1,p)(x, y) = −cp(x)(f 0 · ∇yτp(x, y))A
(p)(x, y)∇xτp(x, y). (4.25)

Let us take vector product equality (4.10) and vector cp∇τp. As a result, we get

B(0,p) = − λ+ 2µ

ρ(λ+ µ)

(
(µ∆τp +∇µ · ∇τp − q0c

−2
p )B(−1,p) +

[
2µ(∇τp · ∇)α(−1,p)

+∇
(
(λ+ µ)c−1

p A(−1,p)
)
− c−1

p A(−1,p)∇µ
]
×∇τp

)
. (4.26)
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Notice that in this formula B(−1,p) = 0 holds.
So, using equality (3.10) where k = 1, we calculate A(−1,p) and B(0,p). Let us show

that evaluations are able to be calculated with recurrent formulas. Let n ≥ 1 be an
integer number. Assume that vectors α(k−1,p), B(k,p) are known for all nonnegative
k < n. Let us show, that equalities (3.10) allow us to �nd formulas for calculation
A(n−1,p) and B(n,p) for k = n+ 1.

Indeed, write equalities r
(n+1,p)
i = 0, i = 1, 2, 3 in the following way:

3∑
j=1

[
q0ij(α

(n,p), τp) + q1ij(α
(n−1,p), τp)] = Q

(n,p)
i , i = 1, 2, 3, (4.27)

where Q
(n,p)
i are components of the vector Q(n,p) de�ned by

Q
(n,p)
i = −

3∑
j=1

n+1∑
m=2

qmij (α
(n−m,p), τp),

= −
3∑
j=1

n+1∑
m=2

[
κmij (α

(n−m,p), τp)
∂τp
∂xj

− ∂

∂xj
κm−1
ij (α(n−m,p), τp)

]
, i = 1, 2, 3.

According the above assumption, vector Q(n,p) is known. The equality (4.27) can be
written in vector form that is quite similar to the equality (4.10), namely,

[(λ+ µ)divα(n−1,p) +∇µ · α(n−1,p) − (p0 + q0)c
−1
p A(n−1,p)]∇τp

+[µ∆τp +∇µ · ∇τp − q0c
−2
p ]α(n−1,p) + 2µ(∇τp · ∇)α(n−1,p)

+∇
(
(λ+ µ)c−1

p A(n−1,p)
)
− c−1

p A(n−1,p)∇µ
+(ρ− µc−2

p )α(n,p) − (λ+ µ)c−1
p A(n,p)∇τp = Q(n,p). (4.28)

Multiplying it scalarly by cp∇τp we get an equality

(λ+ 3µ)∇A(n−1,p) · ∇τp + [(λ+ µ)divα(n−1,p) +∇µ · α(n−1,p)

+2µα(n−1,p) · ∇ ln cp]c
−1
p + [µ∆τp +∇(λ+ µ) · ∇τp

−(λ+ 3µ)∇τp · ∇ ln cp − (p0 + 2q0)c
−2
p ]A(n−1,p) = cpQ

(n,p) · ∇τp, (4.29)

which is an analog of (4.12). Let us substitute in this formula the expression

α(n−1,p) = A(n−1,p)cp∇τp + cp∇τp ×B(n−1,p)

and take into account, that vector B(n−1,p) is known, by the assumption. Transfer
known terms to the right-hand part of the equality and divide the result by ρ. As a
result we will get the equation to de�ne A(n−1,p) :

2c2p(∇A(n−1,p) · ∇τp) + A(n−1,p)[c2p∆τp + c2p∇ ln(c2pρ) · ∇τp − b1] = R(n,p). (4.30)

Here a vector R(n,p) is de�ned by

R(n,p) =
1

ρ

(
cpQ

(n,p) · ∇τp − [(λ+ µ)c−1
p div(cp∇τp ×B(n−1,p))

+∇µ · (∇τp ×B(n−1,p)) + 2µ(∇τp ×B(n−1,p)) · ∇ ln cp]
)
. (4.31)
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Along geodesic Γp(x, y) this equality can be written in the following form

d

dτp

(A(n−1,p)(x, y)

A(p)(x, y)

)
=
R(n,p)(x, y)

2A(p)(x, y)
, (4.32)

where the function A(p)(x, y) is determined by the formula (4.24).
Let ξp(x, y) be an intersection point of geodesic Γp(x, y) with sphere Sε = {x ∈

R3| |x| = ε}. Integrating the equality (4.32) form the point ξp(x, y) to the point ξp(x, y)
we obtain the equality:

A(n−1,p)(x, y) =
[A(n−1,p)(ξp(x, y), y)

A(p)(ξp(x, y), y)
+

∫
Γp(x,ξp(x,y))

R(n,p)(ξ, y)

2A(p)(ξ, y)
dτ ′p

]
A(p)(x, y), n ≥ 1. (4.33)

Let us notice, that the �rst summand of the expression in square brackets is easy to
calculate by using formulas (1.6). As a result we �nd that

A(n−1,p)(ξp(x, y), y)

A(p)(ξp(x, y), y)
= −2(f 0 · ∇yτp(x, y))[cp(y)]

n

|ξp(x, y)− y|n

{
1, n = 1, 2,
0, n > 2.

(4.34)

Let us �nd a formula to calculate B(n,p)(x, y). Multiplying the equality (4.28) vectori-
ally by cp∇τp, we get the expression

[µ∆τp +∇µ · ∇τp − q0c
−2
p ]B(n−1,p) + 2µcp(∇τp · ∇)α(n−1,p) ×∇τp

+cp∇
(
(λ+ µ)c−1

p A(n−1,p)
)
×∇τp − A(n−1,p)∇µ×∇τp

+(ρ− µc−2
p )B(n,p) = cpQ

(n,p) ×∇τp,

that allows us to �nd recurrent formula for B(n,p)(x, y) when n ≥ 1 in the form

B(n,p) =
λ+ 2µ

ρ(λ+ µ)

(
cpQ

(n,p) ×∇τp − [µ∆τp +∇µ · ∇τp − q0c
−2
p ]B(n−1,p)

−cp
[
2µ(∇τp · ∇)α(n−1,p) +∇

(
(λ+ µ)c−1

p A(n−1,p)
)
− c−1

p A(n−1,p)∇µ
]
×∇τp

)
. (4.35)

Comparing this formulas with the formula (4.26), we notice that (4.35) is still true for
n = 0 if we assume that Q(0,p) = 0.

5 The calculation of coe�cients α(k,s)

Now let us consider the group of equalities (3.11). Let k = 0. Then r
(0,s)
i = 0, i = 1, 2, 3

and we obtain the system of homogeneous equations for α(−1,s)

ρα
(−1,s)
i +

3∑
j=1

κ0ij(α
(−1,s), τs)

∂τs
∂xj

= 0, i = 1, 2, 3, (5.1)

in which

κ0ij(α
(−1,s), τs) = −λ(x)δij(α(−1,s) · ∇τs)− µ(x)

(
α
(−1,s)
i

∂τs
∂xj

+ α
(−1,s)
j

∂τs
∂xi

)
.
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Using the equality ρ(x)− µ(x)c2s(x) = 0, it is not di�cult to check that the equations
(5.1) can be written in the following vector form:

−(λ+ µ)(α(−1,s) · ∇τs)∇τs = 0. (5.2)

Represent the vector α(n,s) in the form likewise (4.4):

α(n,s) = cs(x)[A
(n,s)∇τs +∇τs ×B(n,s)], B(n,s) · ∇τs = 0, (5.3)

in which A(n,s) ï¨� B(n,s) are calculated by formulas

A(n,s) = cs(x)(α
(n,s) · ∇τs), B(n,s) = cs(x)(α

(n,s) ×∇τs). (5.4)

It follows from the equality (5.2) that A(−1,s) = 0. The vector B(−1,s) remains inde�nite.

In order to �nd it, let us consider equalities r
(1,s)
i = 0, i = 1, 2, 3. In the vector form,

they are completely analogous to the equality (4.10):

[(λ+ µ)divα(−1,s) +∇µ · α(−1,s) − (p0 + q0)c
−1
s A(−1,s)]∇τs

+[µ∆τs +∇µ · ∇τs − q0c
−2
s ]α(−1,s) + 2µ(∇τs · ∇)α(−1,s)

+∇
(
(λ+ µ)c−1

s A(−1,s)
)
− c−1

s A(−1,s)∇µ
+(ρ− µc−2

s )α(0,s) − (λ+ µ)c−1
s A(0,s)∇τs = 0. (5.5)

In this equality ρ − µc−2
s = 0. Multiplying (5.5) vectorially by cs∇τs and using the

equality A(−1,s) = 0 we get the expression below:

[µ∆τs +∇µ · ∇τs − q0c
−2
s ]B(−1,s) + 2csµ(∇τs · ∇)α(−1,s) ×∇τs = 0. (5.6)

Let us transform last term of this expression in the following form

2csµ(∇τs · ∇)α(−1,s) ×∇τs = 2µ[(∇τs · ∇)B(−1,s) − cs(∇τs · ∇ ln cs)α
(−1,s) ×∇τs

−csα(−1,s) × (∇τs · ∇)∇τs]
= 2µ[(∇τs · ∇)B(−1,s) − (∇τs · ∇ ln cs)B

(−1,s)

+(∇τs ×B(−1,s))×∇ ln cs]

= 2µ[(∇τs · ∇)B(−1,s) − (B(−1,s) · ∇ ln cs)∇τs]. (5.7)

Here the vector equality a× (b× c) = (a · c)b− (a · b)c is used. Divide both parts of
the equality (5.6) by ρ and use the formula (5.7). Then we get the relation

2c2s(∇τs · ∇)B(−1,s) − (B(−1,s) · ∇c2s)∇τs
+[c2s∆τs + c2s∇ ln(ρc2s) · ∇τs − b2]B

(−1,s) = 0, (5.8)

where b2 = b2(x) = c−2
s (x)q0(x)/ρ(x) = q0(x)/µ(x). Along the geodesic Γs(x, y) the

following equality holds:

2
{
c2s(∇τs · ∇)B(−1,s) +

[ 1
τs

+ c2s∇τs · ∇ ln
( √

ρ
√
Js

)
− b2

2

]
B(−1,s)

−cs(B(−1,s) · ∇cs)∇τs
}

=
2cs

√
Js

τs
√
ρ

[ d
dτs

(τs√ρB(−1,s)S−1

√
Js

exp
(
− 1

2

∫
Γs(x,y)

b2(ξ) dτ
′
s

))]
×S exp

(1
2

∫
Γs(x,y)

b2(ξ) dτ
′
s

)
. (5.9)
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Here Js = Js(x, y) = det(∂ζ
s

∂x
), S is some matrix exponential and S−1 is its inverse

matrix. Let us explain an origin of the matrix exponential. Use the notation for the
term cs(B

(−1,s) · ∇cs)∇τs in matrix form:

cs(B
(−1,s) · ∇cs)∇τs = B(−1,s)S, S = cs(∇cs)t∇τs = (∇ ln cs)

t dx

dτs
,

where (∇cs)t means transposed vector∇cs, i.e. represents a column vector. Integration
of the matrix S(x, y) along the geodesic Γs(x, y) gives a matrix exponential that is
de�ned by the equalities:

S(x, y) = exp
{ ∫
Γs(x,y)

S(ξ, y) dτ ′s

}
= exp

{ ∫
Γs(x,y)

(∇ ln cs(ξ))
t dξ
}
.

In these equalities ξ is a variable point of the geodesic Γs(x, y), dξ = (dξ1, dξ2, dξ3),
and τ ′s = τs(ξ, y).

Now let us turn to the calculation of B(−1,s). Using the formula (5.8) we conclude
that the expression in the formula (5.9) under the derivative operation must be constant
along the geodesic Γs(x, y), i.e.

τs(x, y)
√
ρ(x)B(−1,s)(x, y)S−1(x, y)√

Js(x, y)
exp

(
− 1

2

∫
Γs(x,y)

b2(ξ) dτ
′
s

)
= C2. (5.10)

In order to choose a constant C2 we use the calculations that are analogous to have
been used above, when one chose C1. On the one hand, this constant is de�ned by a
limiting equality

C2 = lim
x→y

√
ρ(x) τs(x, y)B

(−1,s)(x, y)S−1(x, y)√
Js(x, y)

exp
(
− 1

2

∫
Γs(x,y)

b2(ξ) dτ
′
s

)
=

√
ρ(y) lim

x→y
[τs(x, y)B

(−1,s)(x, y)],

where the limit is calculated along the geodisic Γs(x, y). On the other hand, this limit
can be calculated by using the formulas(5.4), (1.7). Namely,

lim
x→y

[τs(x, y)B
(−1,s)(x, y)] = − lim

x→y

(f 0 ×∇yτs)

4πρ(y)cs(x)cs(y)
=

(f 0 × ν0s )

4πρ(y)c3s(y)
,

where ν0s is a unit vector tangent to Γs(x, y) at the point y.
Then, we �nd the expression for the constant

C2 =
(f 0 × ν0s )

4πc3s(y)
√
ρ(y)

= −(f 0 ×∇yτs(x, y))

4πc2s(y)
√
ρ(y)

.

The formula (5.10) leads to the equality

B(−1,s)(x, y) = −(f 0 ×∇yτs(x, y))T
(s)(x, y), (5.11)
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where

T (s)(x, y) =
S(x, y)

√
Js(x, y)

4πτs(x, y)c2s(y)
√
ρ(x)ρ(y)

exp
(1
2

∫
Γs(x,y)

q0(ξ)

µ(ξ)
dτ ′s

)
. (5.12)

Finally, we obtain the formula for the coe�cient α(−1,s):

α(−1,s)(x, y) = −cs(x)∇xτs(x, y)×
(
(f 0 ×∇yτs(x, y))T

(s)(x, y)
)
. (5.13)

Calculating inner product of equality (5.5) and vector cs∇τs and taking into account
that A(−1,s) = 0 we get the relation

[(λ+ µ)divα(−1,s) +∇µ · α(−1,s)]c−1
s

+2µcs(∇τs · ∇)α(−1,s) · ∇τs − (λ+ µ)c−2
s A(0,s) = 0,

that yields to

A(0,s) =
c2s

λ+ µ

(
(λ+ µ)divα(−1,s) +∇µ · α(−1,s) + 2µcs(∇τs · ∇)α(−1,s) · ∇τs

)
.(5.14)

Thereby, using the equalities (3.11) for k = 1, we have calculated B(−1,s) and A(0,s).
Further calculations can be done by recurrent formulas. Assume that vectors α(k−1,s),
A(k,s) are given for all k < n. Let us show that the equalities (3.11) for k = n+1 allow
us to �nd the formulas for calculations of B(n−1,s) and A(n,s). Indeed, write equalities
r
(n+1,s)
i = 0, i = 1, 2, 3 in the form

3∑
j=1

[
q0ij(α

(n,s), τp) + q1ij(α
(n−1,s), τp)] = Q

(n,s)
i , i = 1, 2, 3, (5.15)

here Q
(n,s)
i are the components of the vector Q(n,s) de�ned by

Q
(n,s)
i = −

3∑
j=1

n+1∑
m=2

qmij (α
(n−m,s), τs),

= −
3∑
j=1

n+1∑
m=2

[
κmij (α

(n−m,s), τs)
∂τs
∂xj

− ∂

∂xj
κm−1
ij (α(n−m,s), τs)

]
, i = 1, 2, 3.

According to the assumption the vector Q(n,s) is known. The equality (5.15) can be
written in vector form, quite similar to the equality (5.5), namely

[(λ+ µ)divα(n−1,s) +∇µ · α(n−1,s) − (p0 + q0)c
−1
s A(n−1,s)]∇τs

+[µ∆τs +∇µ · ∇τs − q0c
−2
s ]α(n−1,s) + 2µ(∇τs · ∇)α(n−1,s)

+∇
(
(λ+ µ)c−1

s A(n−1,s)
)
− c−1

s A(n−1,s)∇µ
−(λ+ µ)c−1

s A(n,s)∇τs = Q(n,s). (5.16)
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Multiplying the equality (5.16) vectorially by cs∇τs, we get the ratio

[µ∆τs +∇µ · ∇τs − q0c
−2
s ]B(n−1,s) + 2csµ(∇τs · ∇)α(n−1,s) ×∇τs

= {csQ(n,s) + A(n−1,s)[(λ+ µ)∇ ln cs −∇λ]− (λ+ µ)∇A(n−1,s)} × ∇τs. (5.17)

So as the equality holds

2csµ(∇τs · ∇)α(n−1,s) ×∇τs = 2µ[(∇τs · ∇)B(n−1,s) − cs(∇τs · ∇ ln cs)α
(n−1,s) ×∇τs

−csα(n−1,s) × (∇τs · ∇)∇τs]
= 2µ[(∇τs · ∇)B(n−1,s) − (∇τs · ∇ ln cs)B

(n−1,s)

+[A(n−1,s)∇τs + (∇τs ×B(n−1,s))]×∇ ln cs]

= 2µ[(∇τs · ∇)B(n−1,s) − (B(n−1,s) · ∇ ln cs)∇τs
+A(n−1,s)∇τs ×∇ ln cs].

Then the equality (5.17) divided by ρ(x), can be written in the form

2c2s[(∇τs · ∇)B(n−1,s) − (B(n−1,s) · ∇ ln cs)∇τs
+[µ∆τs +∇µ · ∇τs − q0c

−2
s ]B(n−1,s) = R(n,s),

in which

R(n,s) =
1

ρ
{csQ(n,s) + A(n−1,s)[(λ+ 2µ)∇ ln cs −∇λ]− (λ+ µ)∇A(n−1,s)} × ∇τs.

Along geodesic Γs(x, y) this equality can be written in the form

d

dτs

(
B(n−1,s)(x, y)(T (s)(x, y))−1

)
=

1

2
R(n,s)(x, y)(T (s)(x, y))−1, (5.18)

where (T (s)(x, y))−1 is a matrix inverse with respect to T (s)(x, y) de�ned by (5.12).
Let ξs(x, y) be an intersection of the geodesic Γs(x, y) with the sphere Sε = {x ∈

R3| |x| = ε}. Integrating the equality (5.18) between the points ξs(x, y) and x we get
the equality

B(n−1,s)(x, y) =
[
B(n−1,s)(ξs(x, y), y)(T

(s)(ξs(x, y), y))
−1

+
1

2

∫
Γs(x,ξp(x,y))

R(n,s)(ξ, y)(T (s)(ξ, y))−1 dτ ′p

]
T (s)(x, y), n ≥ 1.

The �rst term of the expression in square brackets is easy calculated by using formula
(1.7). As a result we �nd, that

B(n−1,s)(ξ, y)(T (s)(ξ, y))−1|ξ=ξs(x,y) = −(f 0 ×∇yτs(x, y))[cs(y)]
n

|ξs(x, y)− y|n

{
1, n = 1, 2,
0, n > 2.

Let us �nd a formula to calculate A(n,s)(x, y). Scalar multiplying the equality (5.16)
by cs∇τs, we get the relation

[(λ+ µ)divα(n−1,s) +∇µ · α(n−1,s) − (p0 + q0)c
−1
s A(n−1,s)]c−1

s

+[µ∆τs +∇µ · ∇τs − q0c
−2
s ]A(n−1,s) + 2µcs(∇τs · ∇)α(n−1,s) · ∇τs

+cs[∇
(
(λ+ µ)c−1

s A(n−1,s)
)
− c−1

s A(n−1,s)∇µ] · ∇τs
−(λ+ µ)c−2

s A(n,s) = csQ
(n,s) · ∇τs,
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from which it is possible to �nd recurrent formula to �nd A(n,s)(x, y) for n ≥ 1 in the
form

A(n,s) =
c2s

λ+ µ
{[(λ+ µ)divα(n−1,s) +∇µ · α(n−1,s) − (p0 + q0)c

−1
s A(n−1,s)]c−1

s

+[µ∆τs +∇µ · ∇τs − q0c
−2
s ]A(n−1,s) + [2µcs(∇τs · ∇)α(n−1,s)

+cs∇
(
(λ+ µ)c−1

s A(n−1,s)
)
− A(n−1,s)∇µ− csQ

(n,s)] · ∇τs}.

Thus, all the formulas participating in the theorem 1.1, are derived.
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